Climate Change Vulnerability Study and Resilience Plan Update

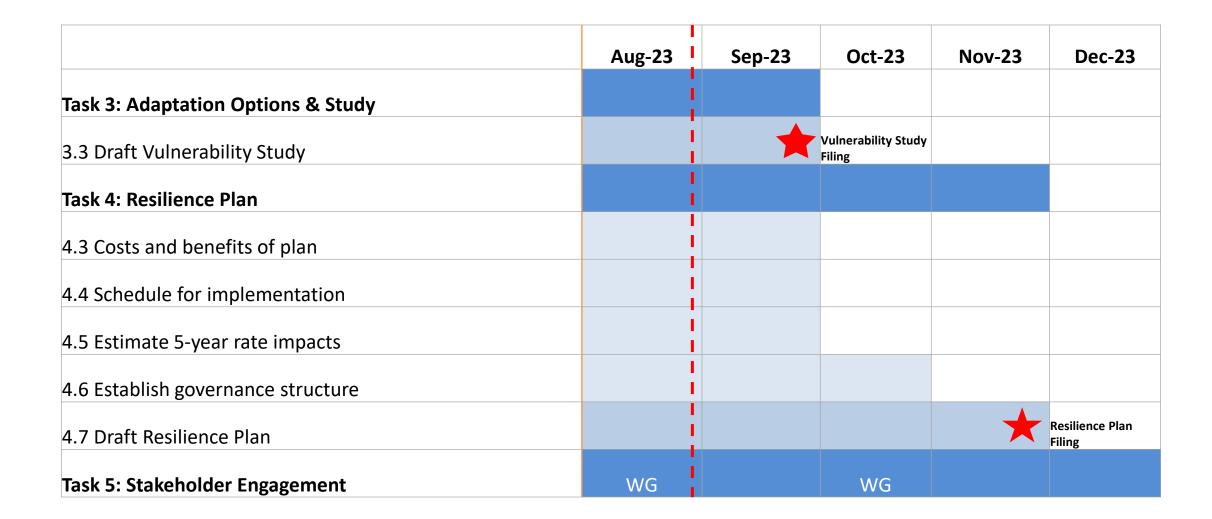
Public Service Law (PSL) § 66(29) – PSC Case 22-E-0222

O&R Climate Resilience Working Group August 29, 2023

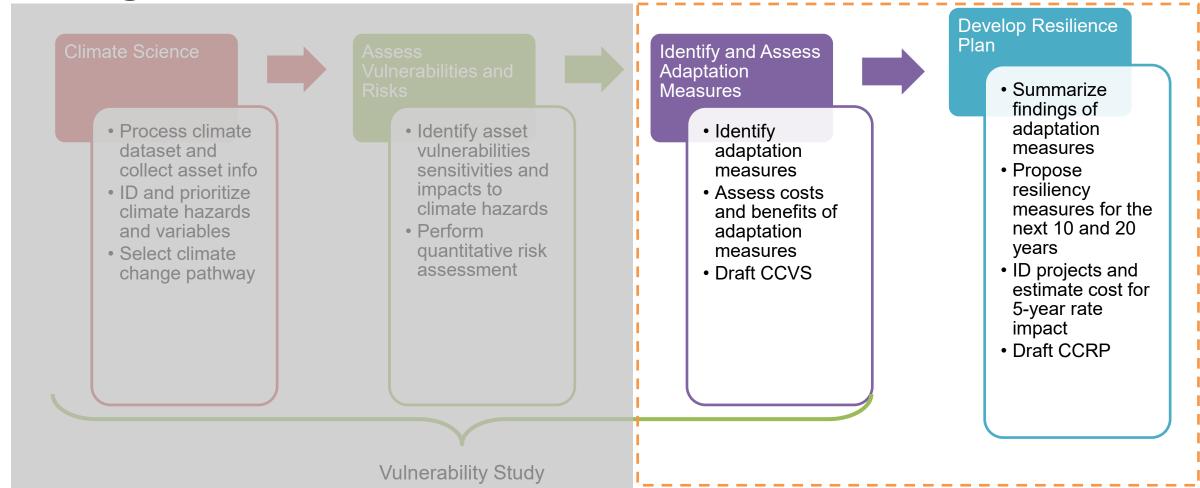
AGENDA

- Progress Update
- Climate Change Vulnerability Assessment Process & Results
- Potential Adaptation Options
- Identified Climate Resilience Measures
- Next Steps

Climate Study and Resilience Plan


Working Group Input and Support

- Awareness of latest climate data projections and priority climate hazards
- Alignment on recommended climate pathways and associated risk tolerances
- Considerations for potential adaptation measures (ongoing)
- Review and feedback of CCVS and Resilience Plan at key draft stages


Timeline

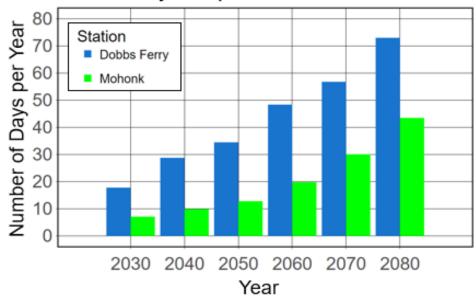
Quarters	Key Milestones	
2022 4Q	Review impacts and trends of latest climate data Share recommended pathways and risk tolerances	
2023 1Q		
2023 2Q	Adaptation options and implementation schedules	
2023 3Q	Climate Study Feedback from WG (8/23-9/6) Climate Vulnerability Study filing (September) Initial investment plans for resilience-related projects and programs	
2023 4Q	Finalize climate resilience plans Climate Resilience Plan Feedback from WG (October) O&R files Resilience Plan with PSC (November)	
2024	Commission's action on Plan (October)	

Timeline of Execution

Orange & Rockland CCVS & CCRP Process Flow

Stakeholder Engagement

Extreme Heat and Humidity


Climate Data Highlights

- Coincident high heat and humidity events are expected to increase in magnitude and frequency
 - Highest annual maximum daily temperature projected to reach 105°F (2050s) and 112°F (2080s)
- Duration of extreme heat events are projected to increase
 - Longest duration heat waves with maximum daily temperatures > 95°F projected to be over 7 days (2050s) and 14 days (2080s)

Vulnerability Highlights

- Substations could experience reduced capacity and accelerated asset degradation
- High heat events and increased demand leading to reduced margin and possible load relief planning
- Increasing heat, humidity and poor air quality events resulting in more frequent worker breaks

(a) Number of Days per Year with Maximum Daily Temperature >95°F

Extreme Precipitation and Flooding

Climate Data Highlights

- Increasing intensity and frequency of heavy rain events
 - Days with more than 2 inches of rain increasing 44% by 2050
 - 5-day maximum precipitation increasing 13% by 2050
- Sea level in the Hudson River rising, increasing size of the floodplain
 - 16" sea level rise projected by 2050
 - 30" sea level rise projected by 2080

Vulnerability Highlights

- 3 substations exposed to potential flooding hazard:
 - Lovett Substation (Hudson River)
 - Hillburn Substation (Ramapo River)
 - Summitville Substation (Delaware and Hudson Canal)
- Underground transmission and distribution lines could experience more frequent inundation
- Potential operational implications for emergency response and service restoration

(b) Change in Annual Days with Precipitation exceeding 2 inches

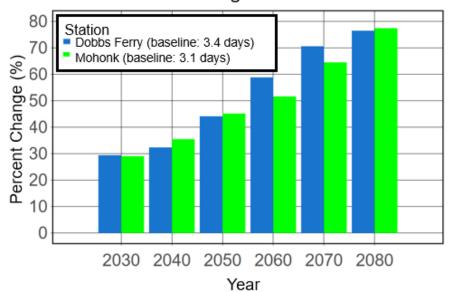


Figure. Summitville substation (red point) with the FEMA 100- and 500-year floodplains overlaid

Extreme Wind and Icing Events

Climate Data Highlights

- Increasing intensity of storms with high wind, including hurricanes, tropical cyclones, nor'easters
- Potential for increasing intensity of freezing rain and ice accumulation, decreasing frequency

Extreme Event	Future Frequency	Future Intensity
Hurricanes and tropical cyclones	Unchanged	Increase
Lightning and tornadoes	Potentially Increase	Potentially Increase
Snow and ice	Decrease	Increase

Table. Summarized future changes in frequency and intensity of extreme events in the O&R service territory.

Vulnerability Highlights

- Overhead distribution lines are most vulnerable to ice and wind
- Overhead transmission lines are also vulnerable, but are designed to withstand higher wind speeds and have larger clearances
- Impacts from wind are primarily vegetation contact to overhead lines
- Implications for vegetation management, emergency response, reliability planning, workforce safety, spare equipment management

Physical Asset Vulnerability Assessment Results

The most vulnerable asset/hazard combinations for O&R were flooding with substations and wind with transmission. The Study Team has identified three substations with high flood exposure to inland and tidal flooding.

High vulnerability			
Medium vulnerability	Temperature &		
Low vulnerability	Temperature	Flooding	Wind & Ice
	Variable (TV)		
Substations			
Overhead Transmission			
Overhead Distribution			
Underground T&D			
Critical Facilities			

Identified Climate Resilience and Potential Adaptation Options

Assessment of highly vulnerable asset/climate hazard risk led to identification of potential adaptation options to address climate hazards

Climate Hazard	System	Asset	Adaptation Measures
Flooding	Substations	All equipment	 Perimeter protection (temporary barrier or flood wall) Elevate equipment Relocate substation outside floodplain Flood pumps Install highest critical equipment in waterproof cabinets
Heat	Transmission	Conductors	 Energy efficiency / demand response Reconductoring to increase capacity Install additional feeders Non-wires solutions to reduce load
Heat	Substations	TransformersRegulators	 Replace with higher rated unit Install additional transformers to reduce loading Non-wires solutions to reduce load Install additional cooling

Identified Climate Resilience and Potential Adaptation Options

Assessment of highly vulnerable asset/climate hazard risk led to identification of potential adaptation options to address climate hazards

Climate Hazard	System	Asset	Adaptation Measure
Wind & Ice	Transmission	ConductorsTowers	 Replace towers Reinforce towers Undergrounding Increase clearances
Wind & Ice	Distribution	ConductorsPoles	 Undergrounding Increase clearances Retrofit with aerial cable and stronger poles
Various	Distribution	• All	 Intelligent grid technologies Advanced voltage optimization Self-healing technologies

Questions and Feedback on the CCVS

- Executive summary
- Introduction
- Climate Data and Future Projections
 - Data Sources
 - Selected Climate Change Pathway
 - Tailored Climate Data Analysis
 - Climate Data Results: Temperature, Humidity,
 Precipitation, Sea Level Rise and Coastal
 Flooding, Inland Flooding, Wind and Ice
- Extreme events
 - Hurricanes and Tropical Cyclones, Snow and Ice, Cold Snaps and Polar Vortex Events, Lightning and Thunderstorms, Drought, Wildfire, Multiple Extreme Events

- Physical vulnerability assessment
 - Methods
 - Summary of Findings
 - Temperature and Temperature Variable
 - Flooding
 - Wind and Ice
 - Compound and Sequential Events
- Operational vulnerability assessment
- Potential adaptation measures
- Conclusion and next steps
- References
- Appendices

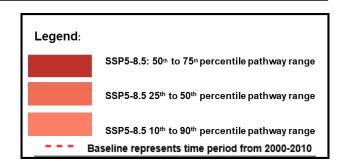
CLIMATE CHANGE RESILIENCE PLAN (CCRP)

Preliminary List of Identified Resiliency Measures

The identified climate resilience measures include new projects (substation flood protection) and incremental changes to existing resilience programs based on the latest science.

Overhead Load relief & Accelerate Storm Hillburn Hardening & Summitville Erosion Distribution Resilience capacity Vegetation Station Flood Station Monitoring Automation Center* planning Management Replacement Protection Program **Transmission** Lovett 138 kV Worker Storm Material Weather Structures & **Transmission** Station Flood Safety and Under-Management* Monitoring* **Protection &** Shoreline PPE* grounding Cabinet Retrofit Restoration Shoreline **Climate Hazard Mitigation For: Substation Flood Protection Protection** Wind Multiple *Denotes programs and projects that are Shared Services with CECONY Heat Flood (i.e., Emergency Preparedness, EH&S, Stores Operations)

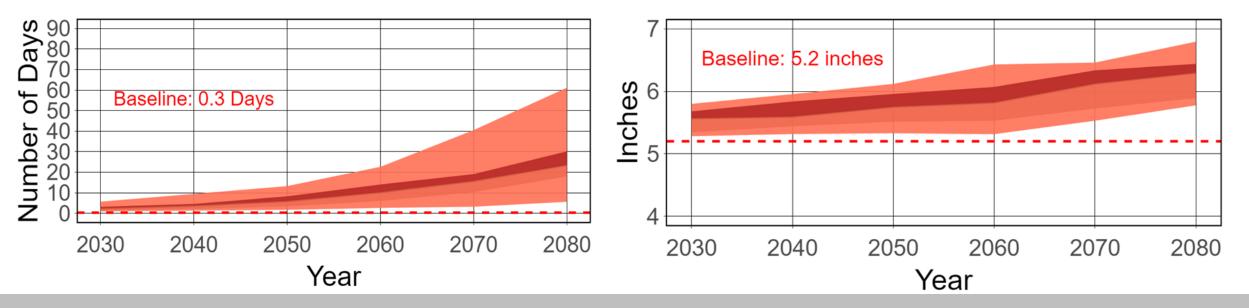
Next Steps on the CCVS and Resilience Plan


Date	Deliverable to Working Group
August 23 – September 6, 2023	Full draft of the CCVS for review and feedback
August 29, 2023	The Working Group can provide additional feedback on the CCVS during this meeting. We will also be discussing identified resilience measures for our Resilience Plan.
September 22, 2023	CCVS filing
Week of October 16	Send draft of the Resilience Plan for review and feedback
Week of October 23 (WG meeting)	The WG can provide additional feedback on the Plan submittal.
By November 21, 2023	Resilience Plan filing

Climate Change Pathways Background

Climate Change Pathway selection to guide the design and planning process

Climate Change Pathways represent O&R's level of risk tolerance to future climate projections and are based on scenarios of socioeconomic activity, levels of GHG emissions and their atmospheric concentrations, known as Shared Socioeconomic Pathways (SSPs)



Mohonk SSP5-8.5 Projections:

Days per year with ambient daily temperature>86°F

Mohonk SSP5-8.5 Projections:

Maximum 5-day Precipitation (inches)

