
  



  

Climate Change Vulnerability Study 
December 2019 
 

 
 
In partnership with: 

 

 
 
With contributions from O'Neill Management Consulting, LLC, 
The Risk Research Group, Inc., and Jupiter Intelligence Inc. 



 
 

  TABLE OF CONTENTS 

i Climate Change Vulnerability Study 

Table of Contents 
Executive Summary ................................................................................................................................ 1 

The Need for a Study ...................................................................................................................................................... 2 
A New Understanding of Climate Science and Extreme Weather ................................................................. 3 
Characterization of Con Edison’s Vulnerabilities to Climate Risks ................................................................ 4 
Resilience Management Framework ......................................................................................................................... 6 
Adaptation Measures to Address Vulnerabilities ................................................................................................. 7 
Next Steps .......................................................................................................................................................................... 10 

Introduction ........................................................................................................................................... 11 
Study Background and Objectives ........................................................................................................................... 11 
Guiding Principles ........................................................................................................................................................... 11 
Study Methodology ....................................................................................................................................................... 13 

Historical and Future Climate ............................................................................................................. 16 
Con Edison in a Changing Climate .......................................................................................................................... 16 
Con Edison’s Understanding and Assessment of Climate Change ............................................................. 17 
Overview of Climate Science Findings Relevant to Con Edison ................................................................... 19 
Signposts: Monitoring and Climate Science Updates ...................................................................................... 25 

Existing Efforts and Practices to Manage Risks Under a Changing Climate ................................ 26 
Physical Infrastructure ................................................................................................................................................... 26 
Data Collection and Monitoring ............................................................................................................................... 27 
Emergency Preparedness ............................................................................................................................................ 28 

Vulnerabilities, a Resilience Management Framework, and Adaptation Options ...................... 29 
Resilience Management Framework ....................................................................................................................... 29 
All Commodities (Electricity, Gas, and Steam) ..................................................................................................... 32 
Electric System ................................................................................................................................................................. 38 
Gas System ........................................................................................................................................................................ 49 
Steam ................................................................................................................................................................................... 52 

Moving Towards Implementation ...................................................................................................... 56 
Initial Climate Projection Design Pathway ............................................................................................................ 56 
Flexible Adaptation Pathways Approach ............................................................................................................... 57 
Selecting Cost-Effective Solutions............................................................................................................................ 62 
Key Issues to Be Addressed for Effective Implementation ............................................................................. 64 
Next Steps .......................................................................................................................................................................... 66 

References .............................................................................................................................................. 67 

Appendices ............................................................................................................................................. 71 

 

 
 



 
 

  EXECUTIVE SUMMARY 

1 Climate Change Vulnerability Study 

Executive Summary 
In its 2013 rate case filing after Superstorm Sandy, Con Edison proposed $1 billion in storm 
hardening investments to build additional resiliency into its energy systems. Con Edison worked 
with a Storm Hardening and Resiliency Collaborative to recommend optimal investments for the 
proposed storm hardening funds, including the recommendation that Con Edison conduct a 
Climate Change Vulnerability Study (Study). As described by the New York State Public Service 
Commission, the purpose of this Study is to aid in the ongoing review of the Company’s design 
standards and development of a risk mitigation plan.1 Over the course of the Study, Con Edison 
regularly convened a stakeholder group to provide feedback, consisting of many of the same 
participants from the Storm Hardening and Resiliency Collaborative. The findings from the Study 
equip Con Edison with a better understanding of future climate change risks and strengthen the 
company’s ability to more proactively address those risks. 

This Study describes historical and projected climate changes across Con Edison’s service 
territory, drawing on the best available science, including downscaled climate models, recent 
literature, and expert elicitation. Con Edison recognizes the global scientific consensus that 
climate change is occurring at an accelerating rate. The exact timing and magnitude of future 
climate change is uncertain. To account for climate uncertainty, the Study considered a range of 
potential climate futures reflecting both unabated and reduced greenhouse gas concentrations 
through time and evaluated extreme event “stress test” scenarios.  

This Study evaluates present-day infrastructure, design specifications, and procedures against 
expected climate changes to better understand Con Edison’s vulnerability to climate-driven risks. 
This analysis identified sea level rise, coastal storm surge, inland flooding from intense rainfall, 
hurricane-strength winds, and extreme heat as the most significant climate-driven risks to Con 
Edison’s systems. Con Edison has unique energy systems, and vulnerabilities vary across those 
systems. The utility’s electric, gas, and steam systems are all vulnerable to increased flooding and 
coastal storms; workers across all commodities are vulnerable to increasing temperatures; and the 
electric system is also vulnerable to heat events.  

While Con Edison already uses a range of measures to build resilience to weather events, the 
vulnerabilities identified in this Study guide the company to pursue additional strategies to mitigate 
climate risks. The Study establishes an overarching framework that can work to strengthen Con 
Edison’s resilience over time. While many adaptation strategies focus on avoiding impacts 
altogether, a comprehensive resilience plan also requires a system that can reduce and recover 
from impacts, particularly following outages.  

Over the course of 2020, Con Edison will develop and file a Climate Change Implementation Plan, 
which will specify a governance structure and a strategy for implementing adaptation options over 
the next 5, 10, and 20 years. While this Study assesses vulnerabilities within Con Edison’s present-day 
systems to a future climate, the implementation plan must also consider the evolving market for 
energy services, and potential changes to services and infrastructure driven by customers, 
government policy and external actions over time.  

                                                      
1 Cases 13-E-0030, 13-G-0031, 13-S-0032, Order Adopting Storm Hardening and Resiliency Collaborative Phase Three 
Report Subject to Modifications (January 25, 2016). 
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The Need for a Study 
The New York State Public Service Commission 
approved an Order and funding for Con Edison to 
conduct a Climate Change Vulnerability Study, with 
a requirement for delivery by the end of 2019. The 
Con Edison Department of Strategic Planning 
undertook this Study with support from more than 
100 subject matter experts throughout the 
company and in collaboration with ICF’s climate 
adaptation and resilience experts and Columbia 
University’s Lamont-Doherty Earth Observatory. The 
Study was designed to meet three primary goals:  

1. Research and develop a shared understanding of 
new climate science and projected extreme 
weather for the service territory. 

2. Assess the risks of potential impacts of climate change on operations, planning, and physical 
assets. 

3. Review a portfolio of operational, planning, and design measures, considering costs and 
benefits, to improve resilience to climate change. 

The Study used an integrated approach to achieve these goals, as shown in Figure 1.  

Figure 1 ■ General approach overview: The process cycles through the steps for each climate 
hazard, beginning with ‘Screen operations, planning, and asset types for climate sensitivity’. The 
process results in the Climate Change Vulnerability Study Final Report. 

 

 
Con Edison’s resilience to climate 
change has important implications 
for increasingly interconnected 
societal, technological, and financial 
systems that the company serves. 
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A New Understanding of Climate Science and Extreme Weather  
Con Edison will face new challenges from a rapidly changing climate through the 21st century. To 
better understand these challenges, the Study characterized historical and projected changes to 
climate hazards within the service territory to estimate the magnitude and timing of potential 
climate vulnerabilities. Climate variables that present outsized impacts to Con Edison include 
temperature, humidity, precipitation, sea level rise, and extreme events, such as rare hurricanes and 
long-duration heat waves. 

Temperature 
Average and maximum air temperatures are projected to increase throughout the century relative 
to historical conditions. Assuming unabated greenhouse gas concentrations, Con Edison could 
experience up to 23 days per year in which maximum temperatures exceed 95°F by 2050 relative to 
4 days historically. Heat waves with 3 or more days when average temperatures exceed 86°F in 
Central Park are projected to occur up to 5 and 14 times per year by 2050 and 2080, respectively, 
relative to 1 heat wave every 5 years historically. 

Humidity 
The frequency of very high heat index thresholds, which combines both temperature and humidity, 
is projected to increase dramatically through the century. The number of days per year where the 
heat index equals or exceeds 103°F could increase by 7 to 26 days by 2050, compared with only 2 
days historically. In addition, Con Edison evaluates the relationship of system load to an index 
called temperature variable (TV), which is similar to a heat index, but considers the persistence of 
heat and humidity over several days. Looking forward, TV thresholds that historically occur only 
once per year (e.g., 86°F) are projected to become common occurrences within a generation, 
occurring between 4 and 19 times per year by 2050 and between 5 and 52 times per year by 2080 
based on reduced and unabated greenhouse gas concentrations, respectively. 

Precipitation 
Con Edison’s service territory experiences rainfall, downpours, snowfall, and ice. Climate change is 
projected to drive heavier precipitation across these event types. For example, the heaviest 5-day 
precipitation total could be 11.8 inches at Central Park by 2050, which represents a 17% increase 
over the historical reference period. Ultimately, projections point to a future defined by more 
frequent heavy precipitation, likely accompanied by smaller increases in the frequency of dry or 
light precipitation days. 

Sea Level Rise 
Sea levels are very likely to rise between 0.62 and 1.94 feet by 2050. In turn, rising sea levels will 
have profound effects on coastal flooding, as sea level rise increases both the frequency and height 
of future floods. For example, the flood height associated with the 1% annual chance flood (i.e., the 
so-called 100-year flood) in New York City is projected to increase from 8.3 feet to as much as 13.3 
feet by 2100 relative to mean sea level at the Battery tide gauge. By the end of the century, today’s 
annual chance flood could occur at every high tide. 
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Extreme Events 
Extreme events are low-probability and high-impact phenomena, such as hurricanes and long-
duration heat waves. While difficult to simulate in climate models, a growing body of evidence 
suggests that many extreme events will increase in frequency and intensity as a result of climate 
warming. This Study considers high impact “worst-case”2 extreme event scenarios, including a 
prolonged heat wave, a Category 4 hurricane, and an unprecedented nor’easter, to understand 
these changes and their impacts on Con Edison. 

Characterization of Con Edison’s Vulnerabilities to Climate Risks 

Heat and Temperature Variable 
The core electric vulnerabilities to increasing temperature and TV include increased asset 
deterioration, decreased system capacity, increased load, and decreased system reliability. Since the 
internal temperature of electric power equipment is determined by the ambient temperature as 
well as the power being delivered, higher ambient temperatures increase the internal operating 
temperature of equipment. 

Higher internal operating temperatures increase the rate of aging of the insulation of electric 
equipment such as transformers, resulting in decreased total life of the assets. Higher internal 
temperatures, resulting from higher average and maximum ambient temperatures, also reduce the 
delivery capacity of electric equipment such as transformers. In addition, higher ambient 
temperatures increase the operating temperature of overhead transmission lines, causing increased 
sagging. One remedy is to decrease the operational rating of the assets to reflect the new 
operating environment. However, derating the system due to increasing temperatures would 
effectively decrease the capacity of the system, and Con Edison will need to make investments to 
replace that capacity if it is needed. 

Similarly, higher TV can cause higher peak loads due to increases in demand for cooling. Increases 
in load may also require investments in system capacity to meet the higher demand. The 
combination of decreased capacity and increased load is best addressed through Con Edison’s 
existing 10- and 20-year load relief program. Addressing this combined risk is estimated to cost 
between $1.3 billion and $4.6 billion by 2050 (based on future projections using Representative 
Concentration Pathway (RCP) 4.5 10th and RCP 8.5 90th percentiles, respectively). 

Increases in heat waves are expected to affect the electric network and non-network systems by 
decreasing reliability. Con Edison uses a Network Reliability Index (NRI) model to determine the 
reliability of the underground distribution networks. The Study’s forward-looking NRI analysis 
found that with an increase in the frequency and duration of heat waves by mid-century, between 
11 and 28 of the 65 underground networks may not be able to maintain Con Edison’s standard of 
reliability by 2050, absent adaptation.  

Outdoor worker safety may be a concern across all Con Edison commodities if heat index values 
rise as projected. When needed, Con Edison can implement safety protocols (e.g., shift 
modifications and hydration breaks) already practiced in mutual aid work that the company 
provided in hotter locations such as Florida and Puerto Rico. Similarly, to supply sufficient cooling 
in 2080, Con Edison’s heating, ventilation, and air conditioning (HVAC) capacity will have to 
increase by 11% due to projected increases in dry bulb temperature. These systems have a roughly 
                                                      
2 “Worst-case” scenarios are meant to explore Con Edison system vulnerabilities related to rare extreme weather events and 
formulate commensurate adaptation and resilience strategies. Scenarios represent one plausible permutation of extreme 
weather and the severity of actual events may exceed those considered. 
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15-year life span and therefore can be upgraded during routine replacements with minimal cost 
increases. 

Flooding from Precipitation, Sea Level Rise, and Coastal Storms 
All underground assets are vulnerable to flooding damage (i.e., water pooling, intrusion, or 
inundation) from precipitation events, sea level rise, and coastal storms. Following Superstorm 
Sandy in 2012, Con Edison protected all infrastructure in the floodplain against future 100-year 
storms and 1 foot of sea level rise (e.g., submersible infrastructure, flood walls, pumps, elevation). 
Sea level rise projections suggest that Con Edison’s 1 foot of sea level rise risk tolerance threshold 
may be exceeded as early as 2030 and as late as 2080. 

Electric substations, overhead distribution, underground distribution, and the transmission 
system are sensitive to precipitation-based hazards, although the design of Con Edison’s assets 
already mitigates some of these risks. For example, flooding from increased intense precipitation 
can damage non-submersible electrical equipment, although Con Edison designs all 
underground cables and splices to operate while submerged in water. In addition, all 
underground distribution equipment installed in flood zones and all new installations are 
submersible.  

To assess future asset vulnerability to sea level rise and storm surge, the Study team analyzed the 
exposure of Con Edison’s assets to 3 feet of sea level rise, while keeping the other elements of Con 
Edison’s existing risk tolerance constant (i.e., a 100-year storm with 2 feet of freeboard). Of the 324 
substations (encompassing generating stations, area substations, transmission stations, unit 
substations, and Public Utility Regulating Stations), 75 would be vulnerable to flooding during a 
100-year storm if sea level rose 3 feet. In addition, 32 gas regulators and five steam generation 
stations would be exposed. Hardening all of these assets would cost approximately $680 million.  

Both the gas and steam distribution systems are vulnerable to water entry, which can reduce 
system pressure and limit distribution capacity. In the gas system, low-pressure segments3 are 
particularly vulnerable to this risk. In addition, the steam system is susceptible to “water hammer” 
events when a high volume of water collects around a manhole, causing steam in the pipes 
underneath to cool and condense. Interaction between steam and the built-up condensate may 
cause an explosion, both damaging the steam system and putting public safety at risk. 

Across all commodities, increased winter precipitation can wash salt from city roads, causing an 
influx of salt-saturated runoff into manholes and percolation into the ground. Salt can cause 
equipment degradation, arcing, manhole fires or explosions, and failure of underground assets.  

Extreme and Multi-Hazard Events 
The Study team reviewed the vulnerabilities of Con Edison’s electric, gas and steam systems to future 
extreme events based on specific, worst case extreme event narratives (Category 4 hurricane, a strong 
nor’easter, and a prolonged heat wave) designed to stress-test these systems.  

Storm surge driven by an extreme hurricane event (i.e., a Category 4 hurricane) has the potential to 
flood both aboveground and belowground assets. In addition, wind stress and windblown debris can 
lead to tower and/or line failure of the overhead transmission system and damage overhead 
distribution infrastructure, which could cause widespread customer outages.  

                                                      
3 The Con Edison gas system contains piping operating at three pressures: low, medium, and high. 
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An extreme nor’easter may cause significant damage to assets across all commodities. During 
nor’easters, accumulation of radial ice can cause tower or line failure of the overhead 
transmission system. Similarly, snow, ice, and wind can damage the overhead distribution system.  

Con Edison’s systems are vulnerable to exceeding system capacity during extreme temperatures; 
gas systems may experience overloading during extreme cold, and electric systems during extreme 
heat.  

On an operational level, the increasing frequency and intensity of extreme weather events may 
exceed Con Edison’s currently robust emergency preparedness efforts. Con Edison’s current “full-
scale” response, which calls for all Con Edison resources and extensive mutual assistance, is initiated 
when the number of customers out of service reaches approximately 100,000. However, low-
probability extreme events can increase customer outages and outage durations by orders of 
magnitude, outpacing current levels of emergency planning and preparedness. 

Resilience Management Framework 

To conceptualize how to systematically address vulnerabilities, the Study team developed a 
resilience management framework (Figure 2). The framework encompasses investments to better 
withstand changes in climate, absorb impacts from outage-inducing events, recover quickly, and 
advance to a better state. The “withstand” component of this framework prepares for both gradual 
and extreme climate risks through resilience actions throughout the life cycle of the assets. As such, 
many adaptation strategies fall under this category. Investments to increase the capacity to 
withstand also provide critical co-benefits such as enhanced blue-sky functionality and reliability of 
Con Edison’s systems. The resilience management framework facilitates long-term adaptation and 
creates positive resilience feedback so that Con Edison’s systems achieve better functionality 
through time. To succeed, each component of a resilient system requires proactive planning and 
investments.  

  

A resilience management framework will help Con Edison build  
resilience over time.  
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Figure 2 ■ Conceptual figure representing a resilience management framework designed to 
withstand changes in climate, absorb and recover from outage-inducing events, and advance to a 
better state. Most resilience actions should occur systematically throughout the asset life cycle to 
enhance the ability to withstand changes in climate, while also enhancing system reliability and blue-
sky functionality. Resilient systems also adapt so that the functionality of the system improves 
through time (green line). Each component of a resilient system requires proactive planning and 
investments. 

 

Adaptation Measures to Address Vulnerabilities 

Con Edison has already undertaken a range of measures to increase the resilience of its systems. 
For example, lessons learned and vulnerabilities exposed during past events, including Superstorm 
Sandy (2012) and the back-to-back nor’easters (winter storms Riley and Quinn, 2018), resulted in 
significant capital investments to harden the system. Looking forward, as Con Edison is investing in 
the system of the future—one with greater monitoring capabilities, flexibility, and reliability—it is 
simultaneously building a system that is more resilient to extreme weather events and climate 
change. In addition to new investments, Con Edison also conducts targeted annual updates to its 
system to ensure capacity and reliability, which help the company keep pace with recent changes in 
temperature and humidity.  

  

Con Edison already has undertaken a range of measures to  
build resilience; this Study identified additional adaptation options  

to address vulnerabilities under a changing climate. 
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Withstand Gradual Changes in Climate and Extreme Events 
Resilience actions should occur systematically throughout an asset’s life cycle to enhance the ability 
to withstand changes in climate while also enhancing system reliability and blue-sky functionality. 
This can be accomplished through planning, designing, and upgrading assets in a resilient manner, 
with ongoing monitoring throughout.  

Plan 
Incorporating climate change projections into Con Edison’s routine planning processes will help 
identify capital needs and help the systems gradually adjust to changes in climate. Some of the 
types of planning processes and tools that may benefit from consideration of climate change 
include the following: 

• Load and volume forecasting for all commodities 
• Load relief planning for the electric system, which should include reduced system capacity and 

higher load due to warmer temperatures 
• Working with utilities in other environments to understand how they plan and design their 

system for the climate Con Edison will experience in the future 
• Long-range planning for all commodities 
• Network reliability modeling and planning 

Design 
The key to designing resilient infrastructure is to update design standards, specifications, and 
ratings to account for likely changes in climate over the life cycle of the infrastructure. While there 
is uncertainty as to the exact changes in climate an asset will experience, selecting an initial climate 
projection design pathway allows engineers to design infrastructure in line with Con Edison’s risk 
tolerance. The Study team suggests an initial climate projection design pathway that follows the 
50th percentile merged RCP 4.5 and 8.5 projections for sea level rise and high-end 90th percentile 
merged RCP 4.5 and 8.5 projections for heat and precipitation.  

Upgrade 
Changing design standards will influence the construction of new assets but does not address the 
vulnerability of existing assets. A flexible and adaptive approach to managing and upgrading assets 
will allow Con Edison to manage risks from climate change at acceptable levels, despite 
uncertainties about future conditions. The flexible adaptation pathways approach allows Con 
Edison to adjust adaptation strategies as more information about climate change and external 
conditions that may affect Con Edison’s operations is learned over time. Figure 3 depicts how 
flexible adaptation pathways are based on flexible management to maintain tolerable levels of risk. 
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Figure 3 ■ Flexible adaptation pathways in the context of tolerable risk and risk management 
challenges to non-flexible adaptation. Adapted from Rosenzweig & Solecki, 2014. 

 
 

As conditions change over time, Con Edison will need to consistently track these changes to 
identify when decision making for additional or alternative adaptation strategies is required. This 
approach relies on monitoring indicators, or “signposts,” that provide information which is critical 
for adaptive management decisions. Broad categories of signposts that Con Edison should consider 
monitoring include climate variable observations and best available climate projections; climate 
impacts; and policy, societal, and economic conditions. Predetermined thresholds for these 
conditions signal the need for a change in action, which support decisions on when, where, and 
how Con Edison can take action to continue to manage its climate risks at an acceptable level. The 
body of this report provides many specific examples of proactive investments in resilience and their 
signposts; a few selected examples are provided in Table 1.  

Table 1 ■ Examples of adaptation strategies to upgrade existing infrastructure and signposts to trigger action 

Strategy Signpost 

Implement electric reliability strategies, such as: 
 Split the network into two smaller networks. 
 Create primary feeder loops within and between networks. 
 Install a distribution substation. 
 Incorporate distributed energy resources and non-wires solutions. 
 Design complex networks that consider combinations of adaptation 

measures. 

Forward-looking network reliability index 
exceeds 1 per unit 

Upgrade HVAC systems. End of the existing asset’s useful life 

Retrofit ventilated equipment with submersible equipment to eliminate the risk of 
damage from water intrusion. 

Expanded area of precipitation-based 
flooding; better maps of areas at risk of 
current and future precipitation-based flooding 

Replace limiting wire sections with higher rated wire to reduce overhead 
transmission line sag during extreme heat wave events. Alternatively, remove 
obstacles or raise towers to reduce line sag issues. 

Increased incidence of line sag; higher 
operating temperatures 

Strategically expand program to elevate gas regulator vent line termini to include 
additional regulators exposed to floodplains associated with stronger storms and 
inland flooding. 

When sea level rise exceeds 1 foot; reported 
or observed flooding in vicinity of asset 
without vent line protectors 

Absorb and Recover from the Impacts of Extreme Events 
It is neither efficient nor cost-effective for Con Edison to harden its systems to withstand every type 
of extreme event. Instead, Con Edison must use a broader suite of adaptation strategies to absorb 
and recover from the inevitable disruptions caused by extreme events exceeding their design 
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standards. Con Edison currently incorporates “absorb” into its design and operations with, for 
example, a limited ability to control customer demand and shed load in extreme cases. A broader 
suite of strategies focuses on emergency preparedness, limiting customer impact and improving 
customer coping, including the following: 

• Supporting the creation of resilience hubs (spaces that support residents and coordinate 
resources before, during, and after extreme weather events (Baja, 2018) and have continued 
access to energy services) 

• Using smart meters to implement targeted load shedding to limit the impact to fewer customers 
during extreme events 

• Strengthening staff skills for streamlined emergency response 
• Planning for resilient and efficient supply chains 
• Coordinating extreme event preparedness plans with external stakeholders 
• Incorporating low-probability events into long-term plans 
• Expanding extreme heat worker safety protocols 
• Examining and reporting on the levels of workers necessary to prepare for and recover from 

extreme climate events 
• Investing in energy storage, on-site generation, and energy efficiency programs 

Advance 
Advancing to a better adapted, more resilient state after an outage-inducing event (i.e., building 
back better/stronger) begins with effective pre-planning for post-event reconstruction. Even with 
proactive resilience investments, events can reveal system or asset vulnerabilities. Where assets 
need to be replaced during recovery, having a plan already in place for selection and procurement 
of assets designed to be more resilient in the future can help to ensure that Con Edison is adapting 
to a continuously changing risk environment. Outage-inducing events also provide important 
opportunities to measure the performance of adaptation investments, helping to inform additional 
actions that further resilience.  

Next Steps 

As a next step from this Study, Con Edison will develop a detailed Climate Change Implementation 
Plan to integrate the recommendations from this Climate Change Vulnerability Study. The 
implementation plan will be developed in close coordination with Con Edison SMEs and will utilize 
quarterly meetings with external stakeholders. The implementation plan will consider updates in 
climate science, finalize an initial climate design pathway, integrate that pathway into company 
specifications and processes based on input from subject matter experts, develop a timeline for action 
with associated costs and signposts, and recommend a governance structure. Some key items for 
consideration in the implementation plan include determining the appropriate amount of proactive 
investment, changes in the policy/regulatory and operating environment and the establishment of a 
reporting structure. 

 

In 2020, Con Edison will develop an implementation plan that details priority actions 
needed in the next 5, 10, and 20 years. 



 

  
 Introduction 

11 Climate Change Vulnerability Study 

Introduction 
Study Background and Objectives 
Con Edison’s resilience to climate change has important implications for increasingly 
interconnected societal, technological, and financial systems that the company serves. Developing a 
shared understanding of Con Edison’s vulnerability to climate change is critical to ensuring the 
continued strength of the company over the coming century. The Con Edison Climate Change 
Vulnerability Study (Study) has three primary goals:  

1. Develop a shared understanding of new climate science and projected climate and extreme 
weather for the territory. 

2. Assess the risks of potential climate change impacts on Con Edison’s operations, planning, and 
physical assets. 

3. Review a portfolio of operational, planning, and design measures, considering costs and 
benefits, to improve resilience to climate change. 

 

The Study was conducted as an outcome of the 2013 rate case. In 2013, Con Edison worked with a 
Storm Hardening and Resiliency Collaborative in parallel with the rate case to provide parties with an 
opportunity to fully examine proposals for plans to protect against storms. In 2014, the New York 
State Public Service Commission approved an Order and funding for Con Edison to implement 
measures to plan for and protect its systems from the effects of climate change, including conducting 
a climate change vulnerability study. The Study was developed by the Con Edison Department of 
Strategic Planning, in collaboration with ICF’s climate adaptation and resilience experts and Columbia 
University’s Lamont-Doherty Earth Observatory. The members of this partnership are collectively 
referred to as the Study team. The Study team relied on inputs and expertise from Con Edison subject 
matter experts (SMEs), including engaging more than 100 SMEs through a series of in-person 
meetings, teleconferences, and workshops.  

Guiding Principles 
The Study used six key principles to efficiently meet its objectives and benefit Con Edison. The 
Study employed a decision-first and risk-based approach, applying the best available climate 
science to produce flexible and adaptive solutions and mitigate risks associated with climate 
change and extreme weather events. The Study process was transparent and interactive to ensure 
that it can be replicated and institutionalized. 
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Decision-first approach. The Study team used a decision-first approach, which focuses on 
understanding the broader vulnerabilities and constraints of the system, the objectives and needs 
of stakeholders, and the adaptation options available, before considering the projected changes in 
future climate. The Study team first identified the needs of decision makers (i.e., Con Edison 
leadership and SMEs) and worked from there to determine information requirements based on 
decision goals, instead of starting by amassing as much data as possible. This approach places a 
higher priority on understanding the decision-making context and providing enough information 
to inform those decisions, which helps to prioritize near- and long-term risks and develop effective 
solutions despite the existence of deep uncertainties related to future climate change. 

Risk-based approach. The Study team employed a risk-based approach that considers both the 
likelihood and the consequence of potential changes in the climate. This involves identifying a 
comprehensive set of plausible future climate outcomes and assessing their probability and 
associated impact on Con Edison’s service territory. Doing so allows Con Edison to assess its 
vulnerability to—and to prepare for—high-probability and low-impact, as well as low-probability 
and high-impact, outcomes. 

Best available climate science. The Study team prioritized continuous dialogues among climate 
scientists, climate adaptation specialists, and Con Edison SMEs to identify which climate scenarios, 
time periods, hazards, variables, and thresholds are important for Con Edison’s operations, 
infrastructure, and planning. The Study team assessed multiple lines of evidence to capture 
historical climate conditions in the territory and employed a comprehensive set of Global Climate 
Models to identify the extent to which current climate conditions may change throughout the 21st 
century. Ultimately, the Study team synthesized climate information into metrics relating plausible 
effects of climatic changes on operations, infrastructure, and planning. 

Transparent and replicable. A transparent and replicable approach allows Con Edison to 
institutionalize its adaptation strategy and increase its adaptive capacity over time. This will help 
SMEs establish their adaptation efforts into emerging policies and procedures, as well as train the 
next generation of SMEs in resilience building. Transparency also engenders trust with internal and 
external stakeholders.  

Flexible solutions and adaptive implementation. A flexible and adaptive approach will allow Con 
Edison to manage risks from a changing climate at acceptable levels, despite uncertainties about 
future conditions. Adaptive implementation pathways, or flexible adaptation pathways, are a 
recognized approach to adaptation planning and project implementation that ensures adaptability 
over time in the face of uncertainty: changes in energy demand, technologies, population, and 
other driving factors, and refinements in the scientific understanding of future climate. Under the 
adaptive approach, resilience measures can be sequenced over time, allowing Con Edison to 
protect against near-term changes while leaving options open to protect against the wide range of 
plausible changes emerging later in the century.  

Resilience management framework. The Study introduces a resilience management framework 
that allows Con Edison to mitigate risks associated with climate changes and extreme weather 
events most relevant to Con Edison’s service territory (Figure 4). Resilient systems are composed of 
more than hardening measures alone, and instead consider measures that increase resilience 
throughout the life cycle of outage-inducing climate events. These measures include the system’s 
capacity to “withstand,” “absorb,” and “recover” from climate risks and “advance” resilience. In this 
way, the resilient management framework is particularly important for addressing complex extreme 
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events with significant uncertainties and extreme thresholds to build into hardening measures 
alone. In turn, resilient systems offer critical co-benefits, such as improved system reliability and 
blue-sky functionality, reduced consequences from non-climatic risks, and more resilient customers. 
A resilience management framework also facilitates long-term adaptation, which enhances the 
critical functionality of the system through time and creates positive resilience feedback. To 
succeed, each measure of a resilient system requires proactive planning and investments. 

Figure 4 ■ Conceptual figure representing a resilience management framework designed to 
withstand changes in climate, absorb and recover from outage-inducing events, and advance to a 
better state. Most resilience actions should occur systematically throughout the asset life cycle to 
enhance the ability to withstand changes in climate, while also enhancing system reliability and blue-
sky functionality. Resilient systems also adapt so that the functionality of the system improves 
through time (green line). Each component of a resilient system requires proactive planning and 
investments. 

 

Study Methodology 
The Study uses an integrated approach, with Con Edison SMEs providing support throughout the 
process. A rapid screen of the sensitivity of operations, planning, and assets (referred to for 
simplicity as “assets” throughout the rest of this document unless otherwise stated) for each climate 
change hazard provided the basis for a risk-based prioritization of assets. The Study team 
performed detailed analyses for the sensitive assets, including identifying a portfolio of adaptation 
options and qualitatively considering the financial costs, co-benefits, and resilience of each option. 
These detailed analyses will inform the development of flexible solutions and the further 
prioritization of assets and options to increase systemwide resilience during the creation of Con 
Edison’s Climate Change Implementation Plan in 2020. Figure 5 depicts the Study’s general 
approach.  
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Figure 5 ■ General approach overview: The process cycles through steps for each climate hazard, 
beginning with ‘Screen operations, planning, and asset types for climate sensitivity’. The process 
results in the Climate Change Vulnerability Study Final Report. 

 
 

Screen operations, planning, and asset types for climate sensitivity. The Study began by 
establishing and confirming a clear set of climate change hazards and relevant thresholds for 
operations, planning, and asset types. The study team engaged SMEs to identify the extent to 
which each climate change hazard is a factor in asset design or operation and rate sensitivities by 
considering impacts from previous weather events and key climate information used in design or 
operation. Only assets with high sensitivity were considered in the subsequent risk-based 
prioritization process. 

Perform risk-based prioritization of operations, planning, and asset types. Following the high-
level screen for sensitivity, the Study team sought to prioritize operations, planning processes, and 
asset types for further analysis.  

• Heat and humidity: Heat and humidity design standards vary across Con Edison assets, so the 
Study team used a risk workbook to guide SMEs through a structured process to identify the 
probability of impact (based on the probability of exceeding thresholds and the impact of 
threshold exceedance) and the consequence of impact. Together, these components create an 
overall risk score for each relevant asset and climate change hazard combination. Consequence is 
defined as the likely impact to the overall system given the possibility for damage or failure of 
the particular asset, and includes reliability, safety, environmental damage, and financial costs to 
the company or customers. The Study team identified several asset types and variable 
combinations with high sensitivity and high overall climate risk to carry forward as priorities in 
the analysis. 

• Sea level rise and storm surge: Sea level rise and storm surge is a geographically defined hazard 
with a common design standard across all Con Edison assets. As such, there was a need to 
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identify potentially exposed assets rather than prioritize among them. The Study team used 
Geographic Information System (GIS) modeling to evaluate the specific type and number of 
assets that would be exposed under various future scenarios.  

• Precipitation: Very few of Con Edison’s assets have design standards tied to precipitation. For the 
few that were identified, the Study team evaluated whether the assets would withstand future 
increases in the intensity of precipitation events. In addition, the Study team worked with Con 
Edison SMEs to identify and prioritize the operational impacts of precipitation on the various 
commodities. 

• Extreme events: By definition, the extreme events analyzed in the study exceed all existing Con 
Edison design standards. As such, the Study team conducted a workshop with SMEs to prioritize 
extreme event risks based on the following: 
− The potential for impacts on operations, planning, and assets 
− How prior major weather events affected assets and operations 
− The preparations that Con Edison has in place for future extreme events 
− How longer or more intense events might overwhelm current preparedness efforts 

 

Identify adaptation options. For the identified vulnerabilities, the Study team developed 
adaptation response options through SME engagement, review of relevant literature, and lessons 
learned from adaptation options implemented in regions with similar challenges. Adaptation 
options include strategies to withstand a changing climate, such as engineering design, operations, 
and planning strategies, as well as strategies to absorb and recover from extreme events. The Study 
team considered adaptation options that are often already in use to manage the hazard, but which 
may require revision or updating to deal with changing risk. The Study team also considered both 
short-term and long-term solutions and took steps to understand and assess the limitations of 
adaptation options.  

Consider costs and benefits of adaptation options against a range of possible futures. The 
Study team worked with SMEs to develop order of magnitude costs of the various adaptation 
strategies, where feasible. Where possible, the Study team conducted a multi-criteria analysis of the 
adaptation options to compare criteria that may be difficult to quantify or monetize, or that may 
not be effectively highlighted in the financial analysis. 

Identify signposts for implementation of adaptation options over time. Evaluation of 
adaptation measures in the context of a continuously changing risk environment poses a challenge 
to typical project planning, design, and execution. It is important to ensure that decision-making 
processes support flexible solutions that allow for effective risk management in the face of 
irreducible uncertainties in projections of future climate conditions. The Study uses an adaptive 
implementation pathway approach to achieve this goal. The Study team designed a framework for 
“signposts,” which represent information that will be tracked over time to help Con Edison 
understand how climate, policy, and process conditions change and, in turn, trigger additional 
action. 

Prioritize options to increase asset and systemwide resilience. Once the prior steps were 
completed, the Study team circulated the findings to SMEs to allow them to strike, add, or refine 
strategies. This process resulted in the prioritized set of strategies included in this report.  
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Historical and Future Climate 
Con Edison in a Changing Climate 
Earth’s climate is not static; it changes in response to both natural and human-caused drivers. The 
past decade was the warmest on record, and global atmospheric warming has increased at a faster 
rate since the 1970s (GCRP, 2017), which the global climate science community attributes to 
increasing human-caused greenhouse gas emissions (IPCC, 2013).  

A growing body of research reveals that a range of climate hazards will likely increase in frequency 
and intensity as a result of atmospheric warming (GCRP, 2017; IPCC, 2013). For example, a warmer 
atmosphere increases the frequency, intensity, and duration of heat waves; holds more water vapor 
for heavy precipitation events; and accelerates ice loss from Earth’s large ice sheets, contributing to 
sea level rise and coastal storm surge. These climate changes highlight how changes in the global 
climate system affect local climatology and weather in Con Edison’s service territory. Local changes 
include both long-term mean changes, such as gradual increases in temperature and sea level, and 
changes in extreme events, such as heat waves, hurricanes, and storm surge. In most cases, long-
term climate change amplifies and increases the likelihood of extreme events. In turn, climate 
changes and baseline climate hazards cause both direct (e.g., physical damage to infrastructure) 
and indirect (e.g., changing customer behavior) impacts across the electric, gas, and steam systems 
of Con Edison’s business. 

Rapid climate change will bring new challenges to Con Edison through the 21st century. This Study 
develops climate projections to characterize these challenges. Still, conceptualizing climate change 
in tangible terms is notoriously difficult. Another way to describe potential climate change is 
through climate analogs, which match expected future climate change at a location to current 
climate conditions in another. Under this perspective, New York City’s temperature and 
precipitation by 2080 could more closely resemble current conditions in southern cities such as 
Memphis, TN, and Little Rock, AR, if greenhouse gas emissions continue unabated (Fitzpatrick & 
Dunn, 2019).4  

                                                      
4 Climate analogs are illustrative and vary depending on the choice of evaluation metrics, decade, and climate scenario. In 
this case, analogs are determined using metrics for seasonal minimum and maximum temperature and total precipitation. 
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Con Edison’s Understanding and Assessment of Climate Change 
The Study team developed improved, downscaled climate projections and used best available 
science to understand and evaluate climate change trends and potential extreme weather events 
across Con Edison’s service territory over near- (2030), intermediate- (2050), and long-term (2080) 
time horizons.5 This approach builds on methods used by the New York City Panel on Climate 
Change (NPCC) and introduces a range of benefits (see Table 2). The Study team focused on 
climate variables that could present outsized impacts to operations, planning, and infrastructure 
across the electric, gas, and steam segments of Con Edison’s business. These include temperature, 
humidity, precipitation, sea level rise and coastal flooding, extreme events, and multiple—or 
compounding—events. 

The primary tools for understanding future climate change are Global Climate Models (GCMs), 
which mathematically simulate important aspects of Earth’s climate, such as changes in 
temperature and precipitation, natural modes of climate variability (e.g., El Niño and La Niña 
events), and the influence of human greenhouse gas emissions (GCRP, 2017). Over short timescales 
(i.e., years to decades), individual GCM projections can differ from one another due to 
unpredictable natural climate variability, differences in how models characterize small-scale climate 
processes, and their response to greenhouse gas emissions/concentration assumptions. For these 
reasons, future climate analyses often consider a large ensemble of GCMs to better discern long-
term trends, account for uncertainty, and consider a fuller range of potential future climate 
outcomes. To this end, the Study team used a broad model ensemble (i.e., 32 GCMs) for each 
climate variable of interest to address the spread across models and provide a comprehensive view 
of future climate. 

While GCMs use a finer spatial resolution than ever before, they still provide coarse-resolution 
estimates of future climate, with model grid cells typically extending approximately 100 kilometers 
on one side. To achieve a more accurate representation of local climate in the New York 
Metropolitan Region, the Study team bias-corrected and downscaled GCM projections (i.e., 
statistically adjusted simulations to bring them closer to observed data) using weather station data 
over a 1976–2005 historical reference period from three weather station locations spanning Con 
Edison’s service territory, including Central Park, LaGuardia Airport, and White Plains Airport.6 

GCM simulations are driven by a standard set of time-dependent greenhouse gas concentration 
trajectories called Representative Concentration Pathways (RCPs), developed by the 
Intergovernmental Panel on Climate Change (IPCC). RCPs consider different evolutions of fossil 
fuels, technologies, population growth, and other controlling factors on greenhouse gas emissions 
through the 21st century. To acknowledge uncertainty in future greenhouse gas concentrations, the 
Study team selected the commonly used RCPs 4.5 and 8.5 to drive each GCM, following precedent 
set by IPCC and NPCC. RCP 4.5 represents a moderately warmer future based on a peak in global 
greenhouse gas emissions around 2040. In contrast, RCP 8.5 represents a hotter future 

                                                      
5 Columbia University’s Lamont-Doherty Earth Observatory led the analysis of temperature, humidity, and precipitation 
projections and extreme event information. ICF provided insights into future climate conditions using localized constructed 
analog (LOCA) projections, analyzed sea level rise projections, and synthesized extreme event narratives. Jupiter Intelligence 
provided projections of extreme temperatures and the urban heat island effect. 
6 Technical information regarding bias-correction and downscaling methods used in this Study are provided in the 
appendices for the relevant climate variables. 



 

  
 Historical and Future Climate Projections 

18 Climate Change Vulnerability Study 

corresponding to “business as usual” increases in greenhouse gas concentrations through the 
century. 

The Study team used a model-based probabilistic framework to evaluate climate change hazards 
and account for model uncertainty under different RCP scenarios. Specifically, the Study team 
analyzed high-end estimates (e.g., the 90th percentile of projections across climate models), and 
mid-point (50th percentile) and low-end (10th percentile) projections for both RCPs. In doing so, 
the Study Team considered the range of potential climate outcomes across models and RCPs to 
form a comprehensive risk-based approach. Under this framework, the RCP 8.5 90th percentile 
approximates a stress test to characterize low probability, high-impact climate change, and its 
impact on Con Edison. 

This Study builds on the approach used by NPCC. Table 2 provides a high-level overview of climate 
information advances developed as part of this Study. 

Table 2 ■ Overview of climate projection methods in this Study relative to the NPCC2 (2015) 
climate projections of record for New York City 

NPCC2 (Reference Projections) Con Edison Study 

Combined projections from two scenarios  
(RCPs 4.5 and 8.5) 

Separate scenario projections 

Four time periods (2020–2080) Seven time periods (2020–2080) to align with planning 
processes 

Single reference point (Central Park) Multiple reference points tailored to the service territory  
(Central Park, White Plains, and LaGuardia) 

Downscaling using the “delta method” Downscaling using “quantile mapping” 

Limited set of climate variables Numerous Con Edison-specific variables and multi-variable 
projections (e.g., heat plus humidity) 

 

The Study also evaluates Con Edison’s vulnerability to rare and complex extreme events, such as 
major hurricanes and long-duration heat waves, that may increase in intensity and frequency as a 
result of climate change. Such events play an outsized role in shaping the public’s perception of 
climate change vulnerability and how institutions should address its unique challenges. While the 
Study team uses model-based probabilistic projections to inform many climate variables, such as 
long-term mean temperatures and sea level, it is more challenging to project the rarest events, 
such as a 1-in-100-year heat wave, and multi-faceted and difficult to model events such as 
hurricanes. Obstacles to modeling rare and complex extreme events include the brevity of the 
historical record relative to the rarity of the event, and challenges associated with modeling 
extremes that have important features at very small space and time scales. 

To address these challenges, the Study team constructed a series of extreme event narratives based 
on historical analogs and the best available climate science. In contrast with model-based 
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probabilistic projections, narratives represent 
plausible future worst-case scenarios7 meant to 
stress-test Con Edison’s system. The narratives 
merge a decision-first and risk-based approach, 
blending best available science with decision 
maker-defined high impacts to develop a better 
understanding of Con Edison’s vulnerability to rare, 
complex extreme events.  

Overview of Climate Science Findings 
Relevant to Con Edison 
The Study team’s analysis characterized historical 
and future changes in temperature, humidity, 
precipitation, sea level rise, and extreme events 
within Con Edison’s service territory. This 
information supports a risk-based understanding of 
potential climate-related vulnerabilities within the 
company’s operations, planning, and physical 
assets. The sections below provide an overview of 
projected climate changes relevant to Con Edison. 
While projections were prepared for Central Park, 
LaGuardia, and White Plains as described above, 
this section commonly uses Central Park as a 
reference point due to its central location and 
because it currently serves as a reference point for 
many Con Edison operations. The report 
appendices contain detailed information on other 
locations and the full scope of climate projections 
and corresponding vulnerabilities developed for 
this Study. 

Temperature 
Both average and maximum air temperatures are 
projected to increase throughout the century 
relative to historical conditions (Figure 6). Climate 
model projections reveal significant increases in the number of days per year in which average 
temperatures exceed 86°F (up to 26 days per year, relative to a baseline of 2 days) and maximum 
temperatures exceed 95°F (up to 23 days per year from a baseline of 4 days; Figure 7) by 2050. At 
the same time, winter minimum temperatures are expected to fall below 50°F as many as 40 
fewer times per year than in the past by mid-century, representing a 20% decrease. 

                                                      
7 Worst-case scenarios are meant to explore Con Edison system vulnerabilities related to rare extreme weather events and 
formulate commensurate adaptation and resilience strategies. Scenarios represent one plausible permutation of extreme 
weather and the severity of actual events may exceed those considered. 

The timing and magnitude of climate 
change over the coming century remains 
uncertain, particularly with respect to rare 
and multi-faceted extreme events. This 
uncertainty presents challenges for 
institutions such as Con Edison in 
understanding the potential effects of 
climate change and the associated risks to 
their business, operations, and financial 
performance.  
 

Scenario analysis is a proven way to 
address these challenges. For example, 
Task Force on Climate-Related Financial 
Disclosures (TCFD) scenarios use forward-
looking projections to provide a framework 
to help companies prepare for risks and 
opportunities brought about by climate 
change. The scenarios used in this Study 
are similarly hypothetical constructs, but 
differ from TCFD scenarios in that they 
provide quantitative details regarding 
future extreme event conditions (e.g., 
regarding specific storm characteristics) so 
that Con Edison can better plan for specific 
impacts to assets and infrastructure. 
Ultimately, this Study uses both climate 
science and stakeholder-driven 
perspectives to develop plausible, high 
impact worst-case scenarios designed to 
stress-test Con Edison’s system. 
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Figure 6 ■ Historic (black line) and projected (colored bands) average air temperature in Central 
Park during the summer under two greenhouse gas concentration scenarios (RCPs 4.5 and 8.5) 

 

Figure 7 ■ The average number of days per year with maximum summer air temperatures 
exceeding 95°F in Central Park under two greenhouse gas concentration scenarios (RCPs 4.5 and 
8.5). The dashed horizontal lines show the historical average number of days. Box plots 
correspond to the 10th, 25th, 50th, 75th, and 90th percentile projections. 

 
 

Multi-day heat events, known as heat waves, create potential risks for Con Edison as they drive 
demand for air conditioning and stress electrical and infrastructure systems. The number of heat 
waves, defined here as 3 or more consecutive days when average temperatures exceed 86°F in 
Central Park, is projected to increase up to 5 and 14 events per year by 2050 and 2080, respectively, 
relative to 0.2 events per year historically. The magnitudes of temperature increases are projected 
to be greatest at LaGuardia and Central Park and smaller at White Plains. 
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Humidity 
The New York Metropolitan Region is susceptible to significant combinations of heat and humidity, 
which cannot be captured by temperature alone. The combination of temperature and humidity 
drives electric demand within Con Edison’s service territory. To address this, the company currently 
evaluates the potential for high loads using an index referred to by Con Edison as temperature 
variable (TV),8 which incorporates considerations of both temperature and humidity. Looking 
forward, TV thresholds that have historically occurred only once per year (e.g., 86°F), are projected 
to become common occurrences within a generation, occurring between 4 and 19 times per year 
by 2050 and 5 and 52 times per year by 2080, under the RCP 4.5 10th percentile and RCP 8.5 90th 
percentile, respectively, at LaGuardia (Figure 8). Smaller increases are expected at White Plains. 

Figure 8 ■ Distributions showing historical (black line) and 2050 projected (blue and red lines) 
summer (June–August) daily electric TV at LaGuardia Airport. The 2050 projections show both the 
RCP 8.5 90th percentile and the RCP 4.5 10th percentile distributions. 

 
 

The heat index is a typical indicator of “how hot it feels,” which considers the combined effect of air 
temperature and relative humidity. The index assesses health risks associated with overheating, 
including for Con Edison employees working under hot conditions. Looking forward, the frequency 
of occurrence for very high heat index thresholds is projected to increase dramatically through the 
century. Projections reveal that the number of days per year when the heat index equals or exceeds 
103°F at LaGuardia could increase to between 7 and 26 days by 2050 under the RCP 4.5 10th 
percentile and the RCP 8.5 90th percentile, respectively, compared to only 2 days historically.  

  

                                                      
8 Temperature variable is calculated using the weighted time integration of the highest daily recorded 3-hour temperature 
and humidity over a 3-day period. The reference TV for Con Edison is 86°F, which approximates a heat index of 105°F. 
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Precipitation 
Con Edison’s service territory experiences a range of precipitation events over a range of 
timescales, including rainfall, downpours, snowfall, and ice. Climate change is projected to drive 
heavier precipitation across these event types because a warmer atmosphere holds more water 
vapor and provides more energy for strong storms. Looking forward, average annual precipitation 
is projected to increase by 0% to 15% relative to the historical baseline in Central Park through 
2050 (Figure 9).  

Figure 9 ■ Observed and projected annual precipitation at Central Park. Projections show potential 
annual precipitation under both the RCP 8.5 90th percentile and the RCP 4.5 10th percentile. 
Projections represent 30-year time averages (shown as blue circles), which reveal the long-term 
trend, but underrepresent year-to-year variability. The dashed line represents the linear trend 
though the observational record, with observed increases given in inches per decade. 

 
 

Projections of heavy rainfall reveal similar increases. For example, the heaviest 5-day precipitation 
amount could be 11.8 inches at Central Park by 2050, which represents a 17% increase over the 
historical reference period. Data from the Northeast Regional Climate Center9 show that 25-year, 
24-hour precipitation amounts at Central Park, LaGuardia, and White Plains could increase by 7% to 
14% and 10% to 21% by mid- and late-century, respectively. Ultimately, projections point to a 
future defined by more frequent heavy precipitation and downpours, likely accompanied by smaller 
increases in the frequency of dry or light precipitation days (GCRP, 2017). 

Projections for changes in snow and ice are more uncertain than those for rainfall. Overall, models 
project a decrease in snowstorm frequency corresponding to a warming climate (Zarzycki, 2018). 
However, while the likelihood of a given storm producing snow instead of rain will decrease in the 
future, if atmospheric conditions are cold enough to support frozen precipitation, then storms are 
expected to produce more snow (or ice) than during the present day (Zarzycki, 2018). 

Sea Level Rise 
A range of underlying factors, including thermal expansion of the ocean, the rate of ice loss from 
glaciers and ice sheets, atmosphere and ocean dynamics, and vertical coastline adjustments 
determine local sea level rise within Con Edison’s service territory. State-of-the-art probabilistic 

                                                      
9 http://ny-idf-projections.nrcc.cornell.edu/ 

http://ny-idf-projections.nrcc.cornell.edu/
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projections (Kopp et al., 2014; 2017) determined these contributions and characterized the rate of 
future sea level rise in the region under both RCPs 4.5 and 8.5 (e.g., Figure 10). These sea level rise 
projections include a unique high-end scenario driven by rapid West Antarctic ice sheet mass loss 
in the later 21st century (DeConto & Pollard, 2016; Kopp et al., 2017). Con Edison has always 
implemented anti-flooding measures. Following Superstorm Sandy in 2012, the company 
implemented a minimum protection design standard of “FEMA plus three feet,”10 allowing for 1 
foot of sea level rise. In turn, forward-looking projections determine when sea level rise may exceed 
Con Edison’s established risk tolerance of 1 foot of sea level rise.  

Figure 10 ■ Historical and projected sea level rise in New York City under RCP 8.5 relative to the 
year 2000. The grey line shows historical mean sea level at the Battery tide gage. Projections are 
relative to the 2000 baseline year. The solid blue line shows the 50th percentile of projected sea 
level rise. The darker shaded area shows the likely range (17th–83rd percentiles), while the lighter 
shaded area shows the very likely range (5th–95th percentiles). The blue dashed line depicts a 
high-end projection scenario driven by rapid West Antarctic ice sheet mass loss in the later 21st 
century (DeConto & Pollard, 2016; Kopp et al., 2017). 

 
 

Sea level rise will very likely be between 0.62 and 1.74 feet and 0.62 and 1.94 feet at the Battery tide 
gauge in lower Manhattan by 2050 under RCPs 4.5 and 8.5, respectively. Projections suggest that 
Con Edison’s 1-foot sea level rise risk tolerance threshold may be exceeded as early as 2030 and as 
late as 2080. 

In turn, rising sea levels will have profound effects on coastal flooding, as sea level rise is expected 
to increase both the frequency and height of future floods (Figure 11). For example, the flood 
height associated with the 1% annual chance (100-year) flood in New York City is projected to 
increase from 10.9 feet to as much as 15.9 feet under RCP 8.5 by 2100, representing an increase of 
close to 50%.11 Similarly, today’s 0.2% annual chance (500-year) flood could look like a 10% annual 

                                                      
10 This includes the FEMA 1% annual flood hazard elevation, 1 foot of sea level rise and 2 feet of freeboard (to align with 
2019 Climate Resiliency Design Guidelines published by the New York City Mayor’s Office of Recovery and Resiliency). 
11 Flood values are above the mean lower low water (MLLW) datum at the Battery tide gauge. MLLW is measured as 2.57 feet 
below mean sea level at the Battery. 
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chance (10-year) flood in 2100, making it 50 times more likely. At the end of the century, today’s 
annual chance flood could occur at every high tide. 

Figure 11 ■ Projected changes in the frequencies of historical flood heights as a result of sea level 
rise. Dashed lines represent projected changes in frequency; solid lines represent illustrative 
changes in flood frequency coinciding with flood heights 

 

Extreme Events 
Rare extreme events, such as strong hurricanes and long-duration heat waves, are low-probability 
and high-impact phenomena that pose outsized risks to infrastructure and services across Con 
Edison’s service territory. While modeling rare extreme events remains challenging and at the 
forefront of scientific research, a growing body of evidence suggests that many types of extreme 
events will likely increase in frequency and intensity as a result of long-term climate warming. 

To address these challenges, the Study team used feedback from Con Edison SMEs to prioritize a 
suite of extreme event narratives that combine plausible worst-case events from both 
climatological and impact perspectives. In turn, the narratives represent future worst-case scenarios 
designed to stress-test Con Edison and the local and regional systems with which it connects. The 
chosen narratives considered a prolonged heat wave, a Category 4 hurricane, and an 
unprecedented nor’easter striking the region. 

Best available climate science reveals that climate change will likely amplify these extremes over the 
coming century. For example, the mean heat wave duration in New York City is expected to 
increase to 13 and 27 days by 2050 and 2080, respectively, based on RCP 8.5 90th percentile 
projections (NPCC, 2019). At the same time, broadscale atmospheric and ocean surface 
temperature changes may drive stronger hurricanes and extratropical cyclones. Looking forward, 
while the total number of hurricanes occurring in the North Atlantic may not change significantly 
over the next century, the percentage of very strong and destructive (i.e., Categories 4 and 5) 
hurricanes is projected to increase in the North Atlantic basin (IPCC, 2013). It can therefore be 
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argued that climate change could make it more likely for one of these storms to impact the New 
York Metropolitan Region, although the most dominant factor will remain unpredictable climate 
and weather variability (Horton & Liu, 2014). Finally, some recent studies project a 20% to 40% 
increase in nor’easter strengthening (i.e., producing the types of storms with destructive winds) 
immediately inland of the Atlantic coast by late-century, suggesting stronger storms may more 
frequently impact the New York Metropolitan Region with heavy precipitation, wind, and storm 
surge (Colle et al., 2013) 

Signposts: Monitoring and Climate Science Updates 
Understanding Con Edison’s vulnerabilities to climate change and adapting to those changes over 
time require a robust monitoring strategy. Climate change evolves through time, meaning that the 
current spread of potential future climate outcomes produced by models will eventually converge 
on a smaller set of climate realizations. To keep up with this evolution, a range of signposts are 
required to sufficiently gauge relevant rates of change and best prepare Con Edison for the most 
likely climate future. 

An awareness of past and present climate conditions in Con Edison’s service territory is critical for 
understanding the trajectory of climate change. Con Edison currently operates a number of stations 
that monitor climate variables and is finalizing plans to expand the number of monitoring locations. 
Increasing observations from monitoring stations will help measure both local climate variations 
and climate change through time, informing Con Edison’s climate resilience planning. Citywide 
observations of variables, such as hourly temperatures, precipitation, humidity, wind speed, and sea 
level, are paramount to building a broad and usable set of guiding measurements. With accurate 
and up-to-date data on these variables, Con Edison can better monitor both changing conditions 
and potential points of vulnerability. 

Con Edison can supplement monitoring through a regularly updated understanding of the best 
available projections as models and expert knowledge evolve over time. Climate projections 
continually improve as the scientific community better understands the physical, chemical, and 
biological processes governing Earth’s climate and incorporates them into predictive models. 
Ultimately, Con Edison wants to draw on the best available data and projections that are driven by 
scientific consensus, but also are accessible and applicable to company needs. Signposts for 
updating climate science used to inform potential Con Edison vulnerabilities include major science 
advancements, such as the release of the new Coupled Model Intercomparison Project (CMIP) 
projections and their integration and validation in new IPCC, NPCC, and National Climate 
Assessment (NCA) reports. These assessments include updated probabilistic climate projections 
representing model advancements, the best available science regarding difficult-to-model extreme 
events, and literature reviews reflecting the current state of science as guided by leading experts. 
Such signposts could justify Con Edison updating their climate projections of record to reflect the 
best available science or projections that represent a significant departure from previous 
understanding. Historically, major scientific reports, such as the IPCC, have been released about 
every 6 to 7 years, which provide a potential constraint on how frequently Con Edison’s 
understanding of climate change within the service territory might be revisited.  
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Existing Efforts and Practices to Manage Risks Under 
a Changing Climate 
Although this Study is Con Edison’s first comprehensive assessment of climate change 
vulnerabilities, Con Edison has already undertaken a range of measures to increase the resiliency of 
its system. Lessons learned and vulnerabilities exposed during past events, most recently 
Superstorm Sandy (2012) and the back-to-back nor’easters (winter storms Riley and Quinn, 2018), 
resulted in significant capital investments to harden the system.  

In addition, as Con Edison invests in the system of the future—one with greater monitoring 
capabilities, flexibility, and reliability—it is simultaneously building a system that is more resilient to 
extreme weather events and climate change. For example, grid modernization will both increase 
efficiency and enhance monitoring capabilities by employing new technology and modes of data 
acquisition. Con Edison is planning to support numerous grid modernization initiatives that target 
energy storage technologies, communications systems, distributed energy resources infrastructure 
and management, complex data processing, and advanced grid-edge sensors (Con Edison, 2019). 
Con Edison additionally plans to modernize its Control Center to assume more proactive and 
centralized management of its complex distribution grid. Throughout these modernization 
initiatives, the company remains in close collaboration with the City of New York.  

Con Edison also conducts targeted annual updates to its system to ensure capacity and reliability. 
These annual updates help the company keep pace in real time with changes in some key hazards. 
For example, when conducting electric load relief planning, Con Edison incorporates load forecasts 
that use an annually updated set of TV data. Although these forecasts are not grounded in future 
projections that consider climate change, they do account for the most recent climate trends and, 
as such, allow the company to stay in stride with the most current data.  

Con Edison’s previous adaptation measures have made targeted improvements in (1) physical 
infrastructure, (2) data collection and monitoring, and (3) emergency preparedness. The following 
measures are illustrative of these targeted improvements, but are not meant to be exhaustive of the 
efforts that Con Edison has undertaken: 

Physical Infrastructure 
• Adopting the Dutch approach of “defense in depth” after Superstorm Sandy to protect all critical 

and vulnerable system components from coastal flooding risks, including the following: 
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− Upgrading and increasing the number of flood barriers and other protective structures 
− Reinforcing tunnels 
− Replacing equipment with submersible equivalents in flood zones (e.g., targeted main 

replacement program, gas system) 
− Installing pumps and elevating infrastructure behind flood walls 

• Protecting or elevating critical electrical infrastructure to the Federal Emergency Management 
Agency (FEMA) 100-year flood elevation plus 3 feet to account for sea level rise and freeboard 
during coastal storms 

• Undertaking a targeted main replacement program that addresses low-pressure gas mains in 
low-lying areas, as well as other potentially vulnerable gas mains 

• Installing isolation devices to limit the impact of damaged infrastructure on customers by de-
energizing more granular sections of the system, when necessary 

• Engaging innovative technologies to reduce the impact of extreme weather on electric 
distribution systems and quicken the recovery, including the following: 
− Demand response technologies that more efficiently regulate load 
− Automated splicing systems that reduce feeder processing times 

Data Collection and Monitoring 
• Developing programs that employ machine learning and remote monitoring to identify areas of 

heightened vulnerability in Con Edison’s systems, including the following: 
− Leak-prone areas of the gas distribution system  
− Gas system drip pots that require draining 

• Initiating a more diligent inspection system that effectively assesses the functionality of assets, 
as well as their exposure to potential hazards (e.g., nearby vegetation), including the following:  
− Underground network transformers and protectors 
− Underground structures 
− Flushing of flood zone vaults 
− Rapid assessments of overhead feeders 
− Overhead system pole-by-pole inspection for specification compliance 

• Future deployment of advanced metering infrastructure (AMI) throughout the service territory 
has the potential to both improve information flow to customers and help absorb the impacts of 
extreme events. Specifically, AMI might be able to rapidly shed load on a targeted network to 
help ensure demand does not exceed supply, which reduces potential damages and likelihood 
of network-wide outages in the event of an extreme event. 
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Emergency Preparedness 
• Improving contractor and material bases for post-storm repair crews and equipment, including 

the following: 
− Expanding and diversifying spare material inventories 
− Ensuring that all spare materials are housed in safe locations 

• Conducting post-event debriefings to understand the impact of weather conditions on system 
performance 

• Engaging with major telecommunications providers and enhancing communications systems 
among customer networks  

• Facilitating equipment-sharing programs across New York State to ensure access to supplies 
during emergency response 

 

Con Edison recognizes that the drivers behind future planning operations are inherently uncertain 
and is committed to both closely monitoring key signposts and continuously updating company 
investment plans and priorities. 
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Vulnerabilities, a Resilience Management Framework, and 
Adaptation Options 
Con Edison may face greater vulnerabilities due to future changes in temperature, humidity, precipitation, 
sea level rise, and extreme weather events. To understand this, the Study team evaluated key 
vulnerabilities of Con Edison’s present-day electric, gas, and steam systems under a changing climate. The 
physical assets, operations, and planning of each system are uniquely vulnerable. In turn, building a 
detailed understanding of key vulnerabilities is an important step toward identifying priority adaptation 
measures. 

Resilience Management Framework 
Under a changing climate, Con Edison will likely experience the increasing frequency and intensity of both 
gradual climate changes and extreme events. In response, the Study team developed a resilience 
management framework (Figure 12) to outline how a comprehensive set of adaptation strategies would 
mitigate future climate risks. The framework encompasses investments to better withstand changes in 
climate, absorb impacts from outage-inducing events, recover quickly, and advance to a better state. The 
“withstand” component of this framework prepares for both gradual (chronic) and extreme climate risks 
through resilience actions throughout the life cycle of assets. As such, many of the adaptation strategies 
identified in the following sections fall under the category of systematically bolstering Con Edison’s ability 
to withstand future climate risks. Investments to increase the capacity to withstand also provide critical co-
benefits, such as enhanced blue-sky functionality and the reliability of Con Edison’s system. The resilience 
management framework facilitates long-term adaptation and creates positive resilience feedback so that 
Con Edison’s system achieves better functionality through time. To succeed, each component of a resilient 
system requires proactive planning and investments.  
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Figure 12 ■ Conceptual figure representing a resilience management framework designed to withstand 
changes in climate, absorb and recover from outage-inducing events, and advance to a better state. 
Investing in a more resilient system (blue line) provides benefits relative to a less resilient, or business-as-
usual, system (red dashed line) before, during, and after an outage-inducing event. Most resilience 
actions should occur systematically throughout the asset life cycle to enhance the ability to withstand 
changes in climate, while also enhancing system reliability and blue-sky functionality. Resilient systems 
also adapt so that the functionality of the system improves through time (green line). Each component of 
a resilient system requires proactive planning and investments.  

 
 

“Withstand” entails proactively strengthening the system to mitigate and avoid climate change risks and 
increase the reliability of Con Edison’s system. “Withstand” investments are not necessarily a one-time 
event. Rather, the ability to withstand climate change must be integrated and revisited throughout the life 
cycle of Con Edison’s assets. Doing so requires changes in the planning, design, and construction of new 
infrastructure; ongoing data collection and monitoring; and eventually investing in the upgrade of existing 
infrastructure, using forward-looking climate information. This life cycle approach to considering climate 
change is captured in Figure 13. Across Con Edison’s electric, gas, and steam systems, planning for new 
investments in system capacity serves as a critical and strategic opportunity to integrate climate 
considerations. In addition, an important aspect of increasing the capacity of new investments to 
withstand changes in climate is maintaining strong design standards that account for gradual changes in 
chronic stressors and more frequent extreme events. However, since design standards do not apply to 
existing infrastructure, a strong monitoring program and signposts for additional adaptation investments 
could help ensure that Con Edison’s existing infrastructure remains resilient to climate change by 
informing adjustments to operations and potential needs for upgrades.  
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Figure 13 ■ “Withstand" actions and investments must be revisited throughout the life cycle of Con 
Edison's assets. 

 
 

“Absorb” includes strategies to reduce the consequences of outage-inducing events, since Con Edison 
cannot and should not harden its energy systems to try to withstand every possible future low-probability, 
high-impact extreme weather event. These actions, many of which Con Edison is already implementing, 
include operational changes to reduce damage during outage-inducing events and to protect exposed 
systems from further damage. 

“Recover” aims to increase the rate of recovery and increase customers’ ability to cope with impacts after an 
outage-inducing event. Such strategies build on Con Edison’s Emergency Response Plans and Coastal Storm 
Plans. In addition, there is a role that Con Edison can play to increase customer coping and prioritize the 
continued functioning of critical services. Resilient customers are those who are prepared for outages and 
are better able to cope with reduced energy service—through measures such as having on-site energy 
storage, access to locations in their community with power, the ability to shelter in place without power, 
and/or prioritized service restoration for vulnerable customers.  

“Advance” refers to building back stronger after climate-related outages and updating standards and 
procedures based on lessons learned. Even with proactive resilience investments, outage-inducing climate 
events can reveal system or asset vulnerabilities. Adjusting Con Edison’s planning, infrastructure, and 
operations to new and future risks after an outage-inducing event, while incorporating learning, will allow 
for a more effective and efficient transition to greater resiliency. Con Edison has taken this approach in the 
past, including investing a billion dollars in storm hardening measures after Superstorm Sandy. Moving 
forward, restoring service following an outage-inducing climate event to a better adapted, more resilient 
state begins with effective pre-planning for post-event reconstruction. Where assets need to be replaced 
during recovery, having a plan already in place for selection and procurement of assets designed to be more 
resilient in the future can help to ensure that Con Edison is adapting to future extremes in a continuously 
changing risk environment. 



 

 Vulnerabilities, a Resilience Management Framework,  
 and Adaptation Options 

32 Climate Change Vulnerability Study 

Implementation of adaptation strategies throughout all of these phases will need to be adjusted over time 
to manage for acceptable levels of risk despite uncertainties about future conditions. The flexible 
adaptation pathways approach, described in further detail in the subsequent section, ensures the 
adaptability of adaptation strategies over time as more information about climate change and external 
conditions becomes available.  

All Commodities (Electricity, Gas, and Steam) 

Vulnerabilities 
The Study team identified priority hazards for each of Con Edison’s commodity systems (electric, gas, and 
steam) and found that several hazards were priorities across all three systems, although these hazards 
present unique vulnerabilities to the various assets within each system. The hazards common to all three 
systems are heat index, precipitation, sea level rise and storm surge, and extreme and multi-hazard events. 
These are discussed below. System-specific vulnerabilities are subsequently discussed in separate sections. 

Heat Index 
Worker safety may be a point of vulnerability if heat index values rise as projected. The Occupational Safety 
and Health Administration has set a threshold of 103°F for high heat index risk for people working under hot 
conditions. During the base period (1998–2017), there were 2 days per year with maximum heat greater than 
or equal to 103°F (but below 115°F). Under a lower emissions climate scenario (RCP 4.5 10th percentile), the 
103°F threshold may be met 5 to 7 days per year by 2050; under a higher emissions scenario (RCP 8.5 90th 
percentile), this may occur 14 to 20 days per year by 2050. This poses a potential health threat to all Con 
Edison workers whose duties require outdoor labor. 

Projected increases in heat index may also affect cooling equipment across Con Edison’s systems, 
including the HVAC units for Con Edison buildings, air cooling towers for the electric system, and a water 
cooling tower for Con Edison’s East River Steam Generating Plant. In order to supply sufficient cooling to 
its systems in 2080, Con Edison’s HVAC systems will have to increase their capacity by 11% due to 
projected increases in dry bulb temperature. These systems have a roughly 15-year life span and therefore 
can be upgraded during routine replacements at an incremental cost of $1.3 million for 157 units. 
Similarly, Con Edison’s cooling towers will have to increase their capacity by 30% by 2050. Cooling towers 
have a 20- to 35-year life span, allowing them to be upgraded during routine replacements at an 
incremental cost of $1.1 million for 19 cooling towers at 13 sites.  

Precipitation 
The Study team conducted an analysis of the physical and operational vulnerabilities of Con Edison’s 
steam system, gas system, and transmission and substation components of the electric system. Findings 
indicated that all underground assets are vulnerable to flooding damage (i.e., water pooling, intrusion, or 
inundation) from heavy precipitation occurring over a short period of time. Specific vulnerabilities and 
their relevant thresholds vary significantly by commodity and, as such, are outlined in their respective 
sections.  
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Sea Level Rise and Storm Surge 
The Study team broke down evaluation of priority vulnerabilities related to sea level rise into two 
components.  

The first component focuses on design standards for new infrastructure. The Study team assessed Con 
Edison’s coastal flood protection standards for robustness to projected sea level rise. Con Edison’s current 
design standard for coastal flood protections includes the FEMA 1% annual flood hazard elevation, 1 foot 
for sea level rise, and 2 feet of freeboard, which aligns with New York City’s Climate Resilience Design 
Guidelines for critical infrastructure and water elevations that Con Edison experienced during Superstorm 
Sandy. Under high-end sea level rise (e.g., due to either rapid ice loss from the West Antarctic Ice Sheet 
corresponding to Kopp et al., 2017, or RCP 8.5 95th percentile projections corresponding to Kopp et al., 
2014), the existing 1 foot sea level rise risk tolerance threshold could be exceeded by 2030; however, 
under more likely scenarios, the current threshold could be exceeded between 2040 and 2080.12 The 
probability that sea level rise will exceed the 1-foot sea level rise risk tolerance by 2020 is under 10%; that 
increases to 65% to 70% by 2050, and to 100% by the 2080s.  

The second evaluation component identified specific physical vulnerabilities of Con Edison’s existing 
assets to impacts related to sea level rise, which are described by commodity below. 

Extreme and Multi-Hazard Events 
Assets across all systems are vulnerable to possible damage from extreme event flooding. Storm surge 
driven by an extreme hurricane event (i.e., a Category 4 hurricane) has the potential to flood both 
aboveground and belowground assets. Specific asset damage varies by commodity and is outlined in the 
commodity-specific sections. In addition, flooding from ice-melt and snowmelt may cause significant 
damage to assets across all commodities, especially if the melt contains corrosive road salts.  

On an operational level, increasing frequency and intensity of extreme weather events may exceed Con 
Edison’s currently robust emergency preparedness efforts. Con Edison’s extreme weather response 
protocols are specified in the company’s hazard-specific Emergency Response Plans and Coastal Storm 
Plans for electric, steam, and gas systems. Con Edison’s current “full-scale” response, which calls for all 
Con Edison resources and extensive mutual assistance, is initiated when the number of customers out of 
service reaches approximately 100,000. However, low-probability extreme events can increase customer 
outages and outage durations by an order of magnitude, outpacing current levels of emergency planning 
and preparedness, as shown in Figure 14. 

                                                      
12 The sea level rise projections use a baseline year of 2000. For more details on these projections and how they relate to Con 
Edison’s design standards, see Appendix 4. 
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Figure 14 ■ Schematic diagram illustrating the increasing impacts during an extreme event (e.g., 
hurricane with extreme wind gusts and storm surge) that demands correspondingly large emergency 
response efforts that may exceed those experienced historically. 

 

Adaptation Measures to Address Vulnerabilities 

Several adaptation measures help address vulnerabilities across Con Edison’s electric, gas, and steam 
systems: improved monitoring systems and capabilities to support planning and decision making, 
emergency preparedness and full system recovery, and improved customer coping. 

Improved Monitoring Systems and Capabilities to Support Planning and Decision Making 
Con Edison can collect updated and comprehensive data to further strengthen the resilience of its long-
term plans and decision-making processes to climate change. Signposts guide planning and decision 
making, especially through informing the timing of implementation and the adjustment of adaptation 
measures, described in greater detail in the section below on Moving Towards Implementation. 

As previously mentioned, it is important to have the latest information on climate variables and 
projections as the climate changes and the science improves. Monitoring local climate rates of change 
across the service territory can help Con Edison better track both changing conditions and potential 
points of vulnerability across its systems. Specific adaptation measures per commodity that are dependent 
on the monitoring of climate variable information are detailed in the respective commodity sections. In 
addition to information on climate variables, Con Edison will need to stay abreast of the latest climate 
science projections generated by expert organizations such as IPCC, NCA, and NPCC. The Study team 
suggests that Con Edison could revise its planning and decision-making processes at least every 5 years 
to incorporate updated climate science information. 

Emergency Preparedness and Full System Recovery 
Con Edison should consider a range of adaptation strategies to increase capacity for an efficient 
preparedness and recovery process, as defined in Table 3. 
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Table 3 ■ Emergency preparedness and system recovery adaptation strategies  

Adaptation Strategy Measures 

Strengthen staff skills for 
streamlined emergency 
response. 

 Use technology to increase the efficiency of emergency response work crews. 
 Review the Learning Center courses to ensure that crews are developing the skills required 

for emergency response.  
 Incorporate supply shortages into emergency planning exercises. 

Plan for resilient and 
efficient supply chains. 

 Develop a resilience checklist for resilient sourcing. 
 Have a plan already in place for selection and procurement of assets designed to be more 

resilient in the future. 
 Ensure that parts inventories are housed out of harm’s way and in structures that can survive 

extreme weather events. 
 Standardize equipment parts, where possible. 

Coordinate extreme event 
preparedness plans with 
external stakeholders. 

 Continue coordination with telecommunication providers, including through joint emergency 
response drills. 

 Continue and strengthen collaboration with the city to improve citywide design, maintenance, 
and hardening of the stormwater system. For example, improved drainage could alleviate the 
potential impacts of flooding and increase the effectiveness of adaptation measures in which 
Con Edison invests (e.g., drain hardening at manholes).  

Incorporate low probability 
events into long-term 
plans. 

 Continue expanding the Enterprise Risk Management framework to include lower probability 
extreme weather events and long-term issues (e.g., 20+ years). 

 Conduct additional extreme weather tabletop exercises informed by the future narratives 
outlined in this report, and consecutive extreme weather events. 

 Consider expanding the definition of critical facilities and sensitive customers. 

Track weather-related 
expenditures. 

 Con Edison’s Work Expenditures Group could track expenditures, such as the cost of outages 
and repairs or customer service calls. Concurrently tracking climate and cost data will enable 
Con Edison to perform correlation analysis over time. 

Update extreme event 
planning tools. 

 Con Edison currently uses an internal Storm Surge Calculator (an Excel workbook that 
determines the flood measures to be employed for coastal assets based on a given storm tide 
level) to help plan for coastal flooding impacts. Con Edison could adjust inputs to this program 
to reflect the following: 
− Updated storm surge projection information, using high-end forecasted surge 
− Information from coastal monitoring, such as sea level rise and coastal flooding 

 In addition, Con Edison could regularly revisit the definition of critical equipment so that the 
Storm Surge Calculator can best inform prioritization of equipment upgrades. 

Expand extreme heat 
worker safety protocols. 

 Implement safety protocols (e.g., shift modifications and hydration breaks) practiced in mutual 
aid work in hotter locations such as Florida and Puerto Rico. 

 Examine and report on the levels of workers necessary to prepare for and recover from 
extreme climate events. 

Improve recovery times 
through system and 
technology upgrades. 

 Consider the use of drones and other technology (satellite subscription) or social media apps 
for damage assessment. 

 Use GIS system to facilitate locating and documenting damage. 
 Expand the use of breakaway hardware and detachable service cable and equipment. 

Improved Customer Coping 
Extreme events can present outsized risks compared to chronic events—risks that, in some cases, also 
extend to larger geographic areas. For example, impacts from hurricanes can overwhelm multiple facets of 
Con Edison’s system and surrounding communities. Con Edison is positioned at the center of increasingly 
interconnected societal, technological, and financial systems, making it difficult and inefficient to evaluate 
risks solely on a component-by-component basis (Linkov, Anklam, Collier, DiMase, & Renn, 2014). Together, 
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these factors necessitate different approaches to considering adaptation compared with climate changes for 
which probabilities are more easily assigned.  

While the City of New York has primary responsibility for coordinating resident emergency response efforts, 
Con Edison can play a role in increased customer coping and resilience. This includes helping customers 
cope with reduced energy service if an extreme event leads to prolonged outages (e.g., supporting on-site 
energy storage, access to locations in the community with power, prioritized service restoration for 
vulnerable areas). Table 4 provides more specific adaptation strategies. Overall, Con Edison could consider 
expanding the definition of critical facilities and sensitive customers. 

Table 4 ■ Improved customer coping adaptation strategies 

Adaptation Strategy Measures 

Create resilience hubs 
(see below for more 
information). 

 Use solutions such as distributed generation, hardened and dedicated distribution infrastructure, 
and energy storage so that resilience hubs can function akin to microgrids to provide a range of 
basic support services for citizens during extreme events. 

 Continue to promote the pilot resilience hub at the Marcus Garvey Apartments in Brooklyn, using 
a lithium ion battery system, fuel cell, and rooftop solar to provide back-up power to a building 
with a community room that has refrigerators and phone charging. 

 Support additional deployment of hybrid energy generation and storage systems at critical 
community locations and resilience hubs. 

 Use AMI capabilities to preserve service for vulnerable populations, if possible. 

Invest in energy 
storage. 

 Continue to enhance customer resilience through continued installation of energy storage 
strategies, including on-site generation at substations or mobile storage on demand/transportable 
energy storage system (TESS) units, and compressed natural gas tank stations. 

 Continue to explore ways to help customers install, maintain, and make use of distributed energy 
resource assets for power back-up, self-sufficiency, and resilience purposes. 

On-site generation  Con Edison currently supports on-site generation for customers through programs such as rebate 
and performance incentives for on-site residential and commercial photovoltaic solar generation, 
incentives for behind-the-meter wind turbines, and incentives for combined heat and power 
projects that Con Edison currently facilitates in collaboration with the New York State Energy 
Research and Development Authority. 

 On-site generation is a recommended approach for locations where resilience hubs may not be 
affordable or necessary. 

 Con Edison could continue to encourage on-site generation for individual businesses and 
residential buildings. 

Energy efficiency  Support improved passive survivability, or the ability to shelter in place for longer periods of time, 
through enhanced energy efficiency programs. 

 Continue to support energy efficiency programs and further expand its energy efficiency program 
portfolio to include additional incentives for energy-efficient building envelope upgrades. 

 

Resilience hubs are an emerging idea in resilience planning, which focus on building community resilience 
by creating a space (or spaces) to support residents and coordinate resources before, during, and after 
extreme weather events (Baja, 2018). A key requirement for a resilience hub is continued access to energy 
services. The objective of a resilience hub is to be able to provide a range of basic support services for 
citizens during extreme events. To accomplish this, resilience hubs may require a hybrid energy solution 
that includes multiple generation sources (e.g., solar and natural gas generation) and energy storage (i.e., 
batteries), plus dispatching controls, similar to the functionality of a microgrid. Figure 15 and Figure 16 
demonstrate how a fuel cell-based microgrid can be used to power key community locations during 
normal operating conditions and during emergency events.  
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Figure 15 ■ Fuel cell-based microgrid supplying energy to key community locations 
(Constellation Energy) 

 

 

Figure 16 ■ Diagram of microgrid operations during normal and emergency operations 
(Constellation Energy) 
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Electric System 

Electric System Overview 
Con Edison’s electric service territory includes both New York City and Westchester County, covering an 
area of 660 square miles and serving 3.3 million customers. Figure 17 depicts a schematic of the Con 
Edison electric system.  

Con Edison’s grid is a delivery system that connects energy sources to customers. While most electricity 
delivered is produced by large third-party generating stations, distributed energy resources also supply 
energy to the grid.  

Energy produced by generating sources is delivered via the Con Edison transmission system, which 
includes 430 circuit-miles of overhead transmission lines and the largest underground transmission 
system in the United States, with 749 circuit-miles of underground cable. The system also includes 39 
transmission substations. The high-voltage transmission lines bring power from generating facilities to 
transmission substations, which supply area substations, where the voltage is stepped down to 
distribution levels.  

Con Edison has two different electric distribution systems—the non-network (primarily overhead) system 
and the network (primarily underground) system. The network system is segmented into independent 
geographical and electrical grids supplied by primary feeders at 13 kilovolts (kV) or 27 kV. The non-
network system is designed using either overhead autoloops with redundant sources of supply, or 4-kV 
overhead grids arranged in a network configuration or as underground residential distribution systems 
designed in loop configurations.  
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Figure 17 ■ Diagram of the Con Edison Electric System 

 

Electric Vulnerabilities  
Assets in the electric segment of Con Edison’s business are most vulnerable to climate-induced changes in 
temperature/humidity and sea level rise. Both climate hazards have already shown their ability to bring 
about outages or damage assets and interrupt operations and carry the potential for future impacts. More 
information on specific vulnerabilities for these and other climate stressors is discussed below.  

Heat and Temperature Variable (TV) 
The core electric vulnerabilities for increasing temperature and TV include increased asset deterioration, 
decreased asset capacity, decreased system reliability, and increased load. Figure 18 illustrates how 
temperature-related stressors, such as maximum and average air temperature, lead to impacts on the 
electric system. 
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Figure 18 ■ Temperature-related impacts on Con Edison's electric system 

 
 

Increased Asset Deterioration 
Increased average temperatures pose a threat to substation transformers. Within a substation, 
transformers are the asset most likely to be affected by projected higher temperatures since their ambient 
temperature design reference temperature is lower (i.e., 86°F) than that of most other assets.13 Higher 
average and maximum ambient temperatures increase the aging rate of the insulation in transformers, 
resulting in decreased asset life.14  

Decreased Asset Capacity  
Because an asset’s internal temperature is the result of the ambient temperature in which it operates, as 
well as the amount of power it delivers, operating in an ambient temperature above the design reference 
temperature decreases the operational rating of the asset. However, derating the system due to 
increasing temperatures would effectively decrease the capacity of the system. When the capacity of the 
system is decreased, Con Edison must make investments to replace that capacity. The Con Edison system 
is currently designed with the capacity to meet a peak summer demand of more than 13,300 megawatts 
(MW). Based on projected temperature increases, capacity reductions in 2050 could range from 285 MW 

                                                      
13 Buses, disconnect switches, circuit breakers, and cables all have a design reference temperature of 104°F or higher. 
14 Not every excursion above the designed-for temperature will result in decreased service life. Two conditions must be met for the 
useful life of the transformer insulation to experience an increased rate of decay: (1) the ambient reference temperature rating must 
be exceeded, and (2) the transformer must be operating at the rated load, typically as a result of the network experiencing a single 
or double contingency. 
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to 693 MW for overhead transmission, switching stations, area station and sub-transmission, and network 
transformers.15 This could potentially result in a capital cost of $237 million to $510 million by 2050. 

The primary impact of increases in ambient temperatures on overhead transmission lines (assuming peak 
load) is increased line sag. Insufficient line clearance presents a safety risk should standard measures such 
as vegetation management not alleviate the risk. If standard measures cannot be applied, the lines would 
have to be derated and investments would be needed to replace the diminished capabilities of the line.  

Decreased System Reliability 
Increases in TV-related events are expected to affect the electric network and non-network systems by 
decreasing reliability. Con Edison uses a Network Reliability Index (NRI) model to determine the reliability 
of the underground distribution networks.16 Con Edison has set an NRI value of 1 per unit (p.u.) as the 
threshold over which reliability is considered unacceptable. Currently, there are no networks that exceed 
this standard.  

The Study team modeled how the NRI value of each network would change without continued 
investments in the system. The forward-looking NRI analysis found that with an increase in the frequency 
and duration of heat waves by mid-century, between 11 and 28 of the networks may not be able to 
maintain Con Edison’s 1 p.u. standard of reliability by 2050, absent adaptation. Under the higher 
emissions scenario (RCP 8.5 90th percentile), projected impacts are relatively severe, even by 2030, with 
up to 21 total networks projected to exceed the NRI threshold by that year, absent adaptation (Figure 19). 
These deficiencies can be reduced by continuing to make investments to better withstand climate events, 
which Con Edison has done in the past through measures such as infrastructure hardening and added 
redundancy, diversity, and flexibility in power delivery. Such measures carry the co-benefit of improving 
blue-sky functionality and reliability.  

Currently, Con Edison replaces paper-insulated, lead-covered (PILC) cables as an effective first line of 
defense against NRI increases. Con Edison is committed to continued investment in this measure, which 
will help reduce this heat-related vulnerability in the near term. The Study team also quantified the value 
of other measures to maintain network reliability, including innovative distribution designs and the use of 
distributed resources, which can be part of microgrids.  

                                                      
15 The assumed decrease in capacity is 0.7% per °C (0.38% per °F) for substation power transformers, and 1.5% per °C (0.8% per °F) 
for overhead transmission conductors (Sathaye, 2013). 
16 NRI is a Monte Carlo simulation used to predict the performance of a network during a heat wave. The program uses the historical 
failure rates of the various components/equipment that are in the network, and through probability analysis determines which 
networks are more likely to experience a shutdown. 
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Figure 19 ■ The number of networks above the NRI threshold of 1 p.u. under both climate scenarios for 
2030, 2050, and 2080 

 
 

The Study team also analyzed the impact of climate change on non-network reliability, which is measured 
in terms of the System Average Interruption Frequency Index (SAIFI).17 The results indicate that the 
reliability of the non-network system is somewhat vulnerable to heat events; however, climate impacts 
would be negligible out to 2080. The average contribution to reliability from non-network autoloop 
feeder failures and 4-kV grid supply feeder failures due to increased temperatures would only contribute 
up to 8% of the maximum threshold SAIFI of 0.45 (i.e., a 0.035 increase in SAIFI in 2080) (New York 
Department of Public Service, 2018). 

Increased System Load  
When temperature and humidity increase, demand for electricity for cooling also increases. Therefore, 
higher TV in the summer can cause higher peak loads. The Study team found an increase in peak load in 
2050 of 6.9% to 19.2%, as compared to historical conditions. These projected changes in load are due only 
to the impact of changing TV, and do not take into consideration changes in other factors (e.g., 
population, increased air conditioning penetration). The Study team found a decrease in winter peak 
electric load. 

Increases in load may require investments in system capacity to meet the higher demand. This cost could 
be between $1.1 billion and $3.1 billion by 2050. The 10- and 20-year load relief investment plans use 
asset ratings and load forecasts as key inputs, both of which include temperature as a factor. This 
combination of a greater demand and a decreased capacity to fill that need will likely warrant a revision to 
the load relief planning process in the future (Table 5). 

                                                      
17 SAIFI is a measure of customer reliability. It is the average number of times that a customer is interrupted for 5 minutes or more 
over the course of 1 year. 
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Table 5 ■ The combined impacts of increased load and asset capacity reduction in 2050 

Scenario 

Total capacity 
under base and 
future 
temperature 
conditions (MW) 

Incremental 
capacity 
reduction due to 
temperature 

Peak load during 
current and 
future 1-in-3 
events (MW) 

Incremental 
load increase 
due to changes 
in TV 

Total additional 
capacity needed 
under climate 
scenarios (MW) 

Base Case 2050 13,300 0 13,525 – 0 

RCP 4.5 10th 
percentile 2050 

13,015 285 14,949 1,424 1,709 

RCP 8.5 90th 
percentile 2050 

12,607 693 16,491 2,966 3,659 

 

Secondary Vulnerabilities 
The Study team identified additional heat and humidity-related vulnerabilities in Con Edison’s system that 
were not flagged as priority vulnerabilities but nonetheless present risks. 

• Transmission system: Con Edison’s current transmission system is designed for the highest 
anticipated loads based on historical values. The Study team found that while load exceeded 90% of 
the peak load (presenting the possibility for thermal overload) on 1.5% of summer days historically, by 
2050, this may increase to 5.2% of days under the RCP 8.5 90th percentile scenario. This shift in TV 
distribution may result in a small increase in the frequency of load drop from the transmission system. 

• Summer operations and voltage reductions: When summer temperatures soar, Con Edison 
implements a set of procedures to avoid voltage and thermal stresses on the system. These procedures 
are triggered by a threshold (e.g., TV 86, which is the 1-in-3 peak load-producing TV). The Study team 
found that there could be a significant increase in the number of days with voltage reductions and 
summer work restrictions. However, if Con Edison continues to invest in the system to ensure 
operational capacity during the 2050 1-in-3 TV event, then there will be a drop in the frequency of 
voltage reductions and summer work restrictions, relative to today. 

• Corporate Emergency Response Plan: Con Edison also uses TV thresholds to trigger elevated threat 
levels under its Corporate Emergency Response Plan (CERP). The Study team conducted an analysis to 
understand how the projected changes in TV will affect the exceedance of current CERP threat levels. 
The analysis indicates that TV conditions exceeding current thresholds will increase in both the lower 
(RCP 4.5 10th percentile) and higher (RCP 8.5 90th percentile) climate change scenario. The conditions 
for reaching a “Serious” threat level based on the current thresholds, for example, would increase from 
0.4 days per summer, on average, to 1.8 days under RCP 4.5, and 12.8 days under RCP 8.5. 

• Volume forecasting: Con Edison conducts volume forecasting to estimate the volume of energy the 
company needs to purchase, a portion of which is weather-sensitive. The calculation for this portion 
relies primarily on heating degree-days (HDDs) for the winter and cooling degree-days (CDDs) for the 
summer. The Study team estimated that Con Edison could experience an increase in summertime 
CDDs, which could result in the energy delivery increasing from 43,077 gigawatt-hours (GWh) in 2050 
under the base case to 43,685 GWh under the RCP 4.5 scenario (a 1.4% increase), and to 45,394 GWh 
under the RCP 8.5 scenario (a 5.4% increase). The Study team found a less significant decrease in HDDs 
due to climate change. 

Sea Level Rise 
RCP 4.5 and RCP 8.5 projections indicate that sea level rise may exceed Con Edison’s current design 
standard for coastal flood protection (i.e., a 100-year storm with 1 foot of sea level rise and 2 feet of 
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freeboard) between 2030 and 2080. The Study team analyzed the exposure of Con Edison’s assets to 3 
feet of sea level rise (i.e., the 2080 RCP 8.5 83rd percentile sea level rise projection), keeping the other 
elements of Con Edison’s existing risk tolerance constant (i.e., a 100-year storm with 2 feet of freeboard). 
By summing the freeboard and sea level rise values, this equates to FEMA’s 100-year floodplain elevation 
plus 5 additional feet.  

Of the 324 electric substations (encompassing generating stations, area substations, transmission stations, 
unit substations, and Public Utility Regulating Stations [PURS]), 75 would be vulnerable to flooding during 
a 100-year storm if sea level rose 3 feet. Three of these potentially exposed substations would only require 
minimal modifications to protect them, 16 would require an extension of existing protections, eight would 
require a new protection approach (i.e., the existing protections cannot be extended), and 48 do not have 
existing protections because they are outside of the floodplain. Hardening all these substations is 
estimated to cost $636 million.  

Precipitation 
The Study team found that substations, overhead distribution, underground distribution, and the 
transmission system are most at risk for precipitation-based hazards.  

Substations may experience an overflow of water from transformer spill moats, which could release oil-
contaminated water within the substation. However, the risk of such an event is low, as transformer spill 
moats are built at a level that is robust to all but a severe and highly improbably conjunction of events.18  

The transmission and overhead distribution systems are both vulnerable to the accumulation of radial ice, 
which can build up on lines and towers during winter precipitation events. In extreme scenarios, 
accumulation of radial ice can result in unbalanced structural loading and subsequent transmission line 
failure, especially when accompanied by heavy winds (Nasim Rezaei, Chouinard, Legeron, & Langlois, 2015). 
Con Edison’s current system meets the National Electrical Safety Code standard for radial ice and is robust 
to ice accumulation. It is uncertain whether climate change will increase or decrease the intensity of future 
icing events.  

The underground distribution system is vulnerable to flooding and salt runoff from snowfall and ice 
events. Flooding can damage non-submersible electrical equipment. This risk is mitigated through Con 
Edison’s designs: All underground cables and splices operate while submerged in water, and all 
underground distribution equipment installed in current flood zones (and all new installations) are 
submersible. Snowfall and ice require municipalities to spread salt on roads, which eventually seeps into 
the ground with runoff water. Road salt can degrade wire insulation and lead to insulation burning and 
arcing, potentially causing safety concerns and customer outages. It is currently unclear how salting 
frequency will change over time.  

Extreme Events 
Hurricanes and nor’easters present physical risks associated with heavy winds, precipitation, and flooding, 
which can lead to widespread system outages and, at worst, physical destruction. During hurricanes, wind 
stress and windblown debris can lead to tower and/or line failure of the overhead transmission system 

                                                      
18 In accordance with New York State code and federal Spill Prevention, Control, and Countermeasure recommendations, Con 
Edison’s transformers are protected by moats designed to hold water from a 6-inch, 1-day storm event, in addition to the gallons of 
oil that may be released during a spill event and a further 50,000–60,000 gallons of fire suppression fluid. Based on this standard, 
Con Edison’s substation transformer moats are robust to 6 inches of rain during a catastrophic emergency, and significantly more 
than that at all other times.  
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and damage overhead distribution infrastructure, which could cause widespread customer outages. 
Intense rain during hurricanes can also flood substations, which may cause an overflow of oil-
contaminated water from transformer spill moats. A Category 4 hurricane could very likely lead to outages 
for more than 600,000 non-network customers and more than 1.6 million network customers. 

During nor’easters, accumulation of radial ice can cause tower or line failure of the overhead transmission 
system. Similarly, snow, ice, and wind can damage the overhead distribution system. Indirectly, salt put 
down by the city to contend with snow and ice accumulation on roads could infiltrate the underground 
distribution system, causing arcing and failure of underground components. 

Extreme heat waves present a range of effects that can contribute to failures, including a lower ampacity 
rating while increasing load demand, causing cables and splices to overheat, transformers to overheat, 
and transmission and distribution line sag. Distribution network component failures can cause Con Edison 
to exceed the network reliability design standard. Greater line sag can lead to flashovers and line trips. 

Adaptation Options for the Electric System 

Withstand 
In the short term, Con Edison can work to address the vulnerabilities of the electric system by integrating 
climate hazard considerations into planning, collecting data on priority hazards, and updating design 
strategies.  

There are several opportunities to integrate climate change data into planning processes. For example, 
Con Edison could integrate climate change projections into long-term load forecasts, consult utilities in 
cities with higher temperatures to refine the load forecast equation for high TV numbers, and develop a 
load relief plan that integrates future changes in temperature and TV into asset capacity and load 
projections. During load relief planning, Con Edison could also consider whether extreme events may shift 
the preferred load relief option—frequent extreme heat could reduce the effectiveness of demand 
response programs. For the transmission system, Con Edison could integrate considerations of climate 
change into the long-range transmission plan. For the distribution system, Con Edison could integrate 
climate projections into NRI modeling and install high-reliability components,19 as needed. 

Given the potential risks that temperature and heat waves pose to the electric system, the Study team 
suggests that Con Edison could collect data on these hazards to build greater awareness of their impacts 
to the system, as well as to monitor for signposts that would trigger additional action. Specifically, Con 
Edison could:  

                                                      
19 System components vary in their reliability. For example, PILC cable performs more poorly than solid dielectric cable. 
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• Install equipment capable of collecting, tracking, and organizing temperature data at substations to 
allow for location-specific ratings and operations. 

• Make ground temperature data more accessible and track increases over time.  
• Expand monitoring and targeting of high-risk vegetation areas. 
• Continue to track line sag and areas of vegetation change via light detection and ranging (LiDAR) 

flyovers to identify new segments that may require adaptation. 
 

These data could be used to routinely review asset ratings in light of observed temperatures. Con Edison 
could also incorporate heat wave projections into reliability planning for the network system.  

Hurricanes are another priority hazard for the electric system and therefore warrant robust planning tools 
that capture potential changes in climate. Con Edison could complement their existing model used to 
predict work crews required to service weather-driven outages with an updated model that better 
resolves extreme weather events and extreme weather impacts on customers in the service territory.  

Design standards are a way to help standardize resilience by ensuring that new assets are built to 
withstand the impacts of climate change hazards. The Study team suggests a variety of design standards: 

• Temperature: Standardize ambient reference temperatures across all assets for development ratings. 
• Precipitation: Update precipitation design standards to reference National Oceanic and Atmospheric 

Administration (NOAA) Atlas 14 for up-to-date precipitation data. Consider updating the design storm 
from the 25-year precipitation event to the 50-year event to account for future increases in heavy rain 
events. 

• Sea Level Rise: Revise design guidelines to consider sea level rise projections and facility useful life. 
Continue to build to the higher of the FEMA + 3’ level and the Category 2 storm surge levels at new-
build sites, as is current practice. Add sea level rise to the Category 2 maps to account for future 
changes and a greater flood height/frequency. 

 

In addition to these systematic approaches, Con Edison can also help the electric system better withstand 
climate hazards through asset-specific physical adaptation measures, when needed. Table 6 illustrates 
these physical options. 
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Table 6 ■ Potential physical adaptation options for electric assets 

Main 
Hazard(s) 

Vulnerable 
Assets or Plan Adaptation Option 

Implementation 
Timeframe Signpost or Threshold  

Temperature Grid 
modernization 

Continue to invest in grid modernization to 
increase resilience to climate change through 
new technology and increased data acquisition. 
Efforts include distribution automation, grid-edge 
sensing (environmental, AMI), asset health 
monitoring, conservation voltage optimization, 
and targeted system upgrades.  

Continuous  Change in ambient 
operating temperatures, 
including changes in 
science-based projections 

Heat Waves Network system, 
which may 
experience 
reduced reliability 
(and therefore 
increased NRI) 
due to heat waves 

Complete PILC cable replacements. 2030 Increased frequency or 
duration of heatwaves 

Continue implementing load relief strategies to 
keep NRI ratings below 1. Options include: 
 Split the network into two smaller networks. 
 Create primary feeder loops within and 

between networks. 
 Install a distribution substation. 
 Incorporate distributed energy resources and 

non-wire solutions. 
 Design complex networks that consider 

combinations of adaptation measures. 

Continuous NRI value over 1 p.u. 

Non-network 
distribution 
system 

Maintain non-network reliability in higher 
temperatures by implementing the following:  
 Autoloop sectionalizing 
 Increased feeder diversity 

2080 Forecasted System 
Average Interruption 
Frequency Index (SAIFI) 
ratings (incorporating 
climate change 
projections) above 
established thresholds 

Overhead 
transmission 

Replace limiting wire sections with higher rated 
wire to reduce overhead transmission line sag 
during extreme heat wave events. Alternatively, 
remove obstacles or raise towers to reduce line 
sag issues. 

Continuous Increased incidence of 
line sag; higher operating 
temperatures 

Explore incorporating higher temperature-rated 
conductors. 

2050 Existing asset 
replacement 

Area and 
transmission 
substation 
transformers 

Undertake measures that contribute to load 
relief, such as energy efficiency, demand 
response, adding capacitor banks, or upgrading 
limiting components, such as circuit breakers, or 
disconnect switches and buses. 

2030/2050 Ambient temperatures 
exceeding asset 
specifications 

Gradually install transformer cooling, or replace 
existing limiting transformers within substations. 

2050/2080 Ambient temperatures 
exceeding asset 
specifications 

Precipitation Substations Harden electric substations from an increased 
incidence of heavy rain events by doing the 
following: 
 Raising the height of transformer moats  
 Installing additional oil-water separator 

capacity 
 Increasing “trash pumps” behind flood walls 

to pump water out of substations 

2080 
 

Changes in the 25-year 
return period storm 
 

Transmission and 
overhead 
distribution 

Underground critical transmission and 
distribution lines. 

2080 Increased incidence of 
icing 
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Main 
Hazard(s) 

Vulnerable 
Assets or Plan Adaptation Option 

Implementation 
Timeframe Signpost or Threshold  

Underground 
distribution 

Retrofit ventilated equipment with submersible 
equipment to eliminate the risk of damage from 
water intrusion. 

2050 
 

Expanded area of 
precipitation-based 
flooding; better maps of 
areas at risk for current 
and future precipitation-
based flooding 

Reduce the incidence of manhole events due to 
increased precipitation and salting by doing the 
following: 
 Expanding Con Edison’s underground 

secondary reliability program 
 Accelerated deployment of vented manhole 

covers 
 Replacement of underground cable with dual-

layered and insulated cable, which is more 
resistant to damage 

 Installation of sensors in manholes to detect 
conditions indicating a potential manhole 
event 

2050 Increase in the City's use 
of salt over the winter 
period; increased rate of 
winter precipitation 

Hurricanes Overhead 
transmission 

Continue to expand existing programs to 
reinforce transmission structures; address 
problems with known components. 

Continuous Increased 
frequency/severity of 
heavy winds; existing 
asset replacement 

Overhead 
distribution 

Invest in retrofits for open wire design with aerial 
cable and stronger poles. 

2080 Increased 
frequency/severity of 
heavy winds; existing 
asset replacement 

Underground critical sections of the overhead 
distribution system to ensure resilience against 
hurricane force winds and storm surge. 

2080 Increased 
frequency/severity of 
heavy winds 

Nor’easters Overhead 
transmission and 
distribution 

Continue to expand programs to reinforce 
transmission and distribution structures and 
expand the number of compression fittings used 
to address weak points in transmission lines. 

Continuous Increased incidence of 
icing; existing asset 
replacement 

Underground 
distribution 

Upgrade high failure rate components. Continuous Increased 
frequency/severity of 
nor’easter events  

 

Of course, it is neither practical nor feasible for Con Edison to build resilience to the point that its electric 
system can fully withstand the impacts of all climate hazards. The Study team thus suggests that Con 
Edison consider the following strategies to help the electric system better absorb and recover from 
impacts: 

Absorb 
• Temperature: Increase capabilities to provide flexible, dynamic, and real-time line ratings. 
• TV: Routinely update voltage reduction thresholds and hands-off thresholds to account for changes in 

climate and the changing design of the system. 
• Hurricanes: Continue to explore and expand operational measures to increase the resiliency of the 

overhead distribution system by increasing spare pole inventories to replace critical lines that are 
compromised during extreme weather events. 

• Heat waves: Stagger demand response consecutive event days across different customer groups to 
increase participation; ensure that demand response program participants understand the 
purpose/cause of the event; use technology to more efficiently regulate load/use AMI to rapidly shed 
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load on a targeted network to help ensure that demand does not exceed supply; and continue 
installation of energy storage strategies, including on-site generation at substations or mobile storage 
on demand/transportable energy storage system (TESS) units, and compressed natural gas tank stations. 

Recover 
• Heat waves: Continue to actively engage forward-looking technologies to improve extreme recovery 

time for distribution systems, such as automated splicing systems to reduce feeder processing times. 
• Extreme events: Support additional deployment of hybrid energy generation and storage systems at 

critical community locations and resilience hubs; support increasing the percentage of solar/other 
distributed generation projects to allow for islanding; encourage on-site generation for individual 
businesses and residential buildings; and increase the use of LiDAR and drones to assess damage and 
reduce manual labor. 

Gas System 

Gas System Overview 
Con Edison’s gas service territory covers Manhattan, Bronx, Westchester, and parts of Queens. Con Edison 
serves approximately 1.1 million firm customers and 900 large-volume interruptible customers who can 
alternate fuel sources. The natural gas system consists of more than 4,359 miles of pipe transporting 
approximately 300 million dekatherms (MMdt) of natural gas annually. About 56% of the system operates 
at low pressure, 11% operates at medium pressure, and 33% operates at high pressure. Figure 20 depicts 
the Con Edison natural gas delivery chain.  

Figure 20 ■ Con Edison natural gas delivery chain 
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Gas Vulnerabilities  
Most of Con Edison’s gas assets are underground, and gas load peaks in the winter rather than in the 
summer, which means that gas assets are less likely to be damaged by subaerial extreme events, such as 
heat waves, lightning, and strong winds. As discussed in Con Edison’s Post Sandy Enhancement Plan, Con 
Edison’s gas assets are most vulnerable to underground water intrusion caused by flooding, and thus 
projected increases in the frequency of heavy precipitation and downpours, sea level rise and storm surge, 
and hurricanes and nor’easters pose a significant risk (Con Edison, 2013).  

Water intrusion can occur if underground water enters gas pipes or mains and may result in a drop in 
pressure and lead to scattered service interruptions; low-pressure segments of the system and cast iron 
pipes are particularly vulnerable to this risk. In addition, pipe sections near open-pit construction projects 
may also be more vulnerable, because open excavation work can create opportunities for water intrusion 
if flood protection measures are not consistently used. Con Edison has already developed operational 
protocols that require crews working on open excavation sites to secure them to minimize water intrusion 
risk. 

Water intrusion into gas regulators through aboveground vents may also cause damage. This intrusion 
could lead to water sitting on top of the diaphragm that allows each regulator to function and exerting 
additional pressure on the diaphragm that could, in turn, over-pressurize the regulator. Over-pressurized gas 
flowing through a system designed for lower pressure gas increases the possibility of tearing leaks in 
distribution piping, and in the worst-case scenario, could blow out pilot lights. 

For the gas distribution system to function at full capacity and to be able to provide customers with desired 
gas supply, Con Edison must keep gas moving through the system at the intended flow rate, or pressure 
level, of each system segment. Once water enters the gas system, it is difficult to pinpoint the location and 
remove the water, which can increase the durations of resulting service interruptions.  

Con Edison is currently undertaking several measures to manage underground water intrusion: 

• Using drip pots to collect water at low points in the system (approximately 8,000 are currently in place) 
• Developing a program to better prioritize gas infrastructure replacements. Remote sensors and 

machine learning could identify leak-prone areas to prioritize for upgrades intended to mitigate 
increasing precipitation risks in the face of climate change 

• Developing a drip pot remote monitoring program using sensors, which would increase the efficiency 
of periodic emptying of drip pots and reduce the effort needed to monitor drip pots during the period 
of planned pipe replacement 

• Shifting toward constructing and repairing infrastructure with more leak-resistant equipment, when 
possible 

 

A climate change-driven increase in the frequency and intensity of flood events, such as heavy rain events 
or snow events followed by rapid snow melt, or coastal storm surge, may elevate the risk of water 
infiltration into the low-pressure gas system. The precipitation threshold currently used as a benchmark 
for monitoring and emptying drip pots is ½ inch of rain in 24 hours. Under the RCP 8.5 scenario, this 
threshold is projected to be exceeded 37 days per year in Central Park by the latter part of the century, 
which is nearly 20% more than the 31 days observed over the baseline period. 

Low-probability, high-impact extreme events may also include heavy rainfall and storm surge that could 
increase the risk of water entering the distribution system. An increase in the frequency and intensity of 
extreme events may make water infiltration into the gas distribution system more likely. Con Edison’s gas 
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system has established criteria to ensure that new equipment, such as gas regulator line vents, is resilient 
against a 100-year storm and 1 foot of sea level rise. After Superstorm Sandy, Con Edison upgraded two 
regulator stations to meet this standard. The Study team determined that to protect regulator stations 
against 3 feet of sea level rise, Con Edison would need to update 32 regulator stations, at a cost of $13.8 
million.  

The gas transmission system is vulnerable to cold snaps associated with nor’easters, when temperatures 
can drop below 0°F for multiple days. Transmission system capacity is designed to meet demand 
projected for weather conditions at or above 0°F. Temperatures below that threshold may increase 
demand to a level that exceeds system capacity; in such an event, system pressure may decrease, resulting 
in customer service loss.  

In a generally warmer climate, the gas sector could experience significant decreases in winter energy sales 
for heating. There could be up to a 33% decrease by 2050 and a 49% decrease by 2080. Similarly, under 
the RCP 8.5 scenario, winter gas peak load is projected to decrease by 144 MMdt in 2050, compared to 
the base case. 

Adaptation Options for the Gas System 
In addition to Con Edison’s existing efforts, the Study team identified several additional adaptation 
options that the company could consider. Some measures proposed, such as remote information 
monitoring and analysis, address vulnerabilities in operations and planning processes. Most measures 
proposed address physical vulnerabilities (see Table 7), which fall within the “withstand” adaptation 
category.  

In the short term, Con Edison could focus on expanding its monitoring capabilities, particularly through 
programs that use machine learning and remote monitoring to identify vulnerable areas of the 
distribution system, and remote drip pot monitoring sensors.  

To account for changing temperatures, Con Edison could integrate climate change data on changes in the 
winter gas TV into gas volume and peak load forecasting so that the company is continuously planning 
for future changes in climate.  

To address physical risks to existing infrastructure, Con Edison may need to invest in the system at 
strategic points in time, as described in Table 7.  

Distribution system measures focus on minimizing the risk of flood water entering and depressurizing gas 
mains and pipes, and measures to more easily re-elevate pressure if water does enter the system.  

Adaptation measures identified to address transmission system vulnerabilities primarily focus on 
diversifying the system and strengthening load management when capacity is constrained. 
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Table 7 ■ Physical adaptation options for gas commodities 

Hazard Asset Adaptation Option 
Implementation 
Timeframe Signpost or Threshold 

Extreme 
Hurricane 
(Category 4) 

Transmission 
System 

Procure additional compressed 
natural gas tank stations. 

Designing for a future 
Category 4 hurricane 

Increased frequency and 
severity of storms that could 
cut supply, including from 
science-based projections 

Gas 
Regulators 

Install vent line protectors, 
extend vent lines and posts, 
seal all penetrations, and/or 
elevate key electric and 
communications equipment to 
protect vent lines. 

2050 When sea level rise 
exceeds 1 foot, or if flooding 
is reported and the 
regulators do not have vent 
line protectors 

Distribution 
System 

Continue targeted Main 
Replacement Program (planned 
completion by 2036) to harden 
gas mains against 
depressurization by water 
intrusion or other concerns. 

~2030 (goal to complete 
program by 2036) 

Increase in flooding events 

Extreme 
Nor’easter  

Transmission 
System 

Construct additional gate 
stations. 

Designing for a future 
worst-case nor’easter 

More frequent or intense 
cold spells that drop 
temperatures below the 
design threshold for 
consecutive days and 
threaten supply 

Build larger and/or additional 
transmission mains. 

Create ties between mains to 
diversify the transmission 
system. 

Install remote operated valves 
to more efficiently isolate load 
for load management 
(temporarily disconnecting gas 
customers) during peak events. 

 

In addition, given the increasing potential for extreme events, Con Edison could consider distribution 
system resilience options such as exploring and implementing ways to elevate system pressure in low-
flow conditions.  

Steam System  

Steam System Overview  
Con Edison’s steam system provides service to more than 3 million Manhattan residents (including 
approximately 1,720 metered customers) south of 96th Street. Total system capacity is about 11,676 
thousand pounds per hour (Mlb/hr). The distribution system is comprised of a continuous network of pipes 
(steel main pipes and steel and brass service and condensate piping)—in aggregate, about 105 miles of 
piping. The pipes’ physical location is directly correlated with the locations of generation sources and 
regional customer demand. Figure 21 shows the locations of several steam system assets.  
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Figure 21 ■ Key assets included in the Con Edison steam system 

 
Steam Vulnerabilities 
Like the gas system, much of Con Edison’s steam system is underground, and steam is also a 
winter-peaking rather than a summer-peaking commodity. As such, steam generation and 
distribution assets are generally less prone to damage by shifts and extremes in temperature, 
humidity, and wind, and more vulnerable to flooding, which may be caused by increased 
precipitation, coastal inundation, snow melt, or storm surge in extreme events. Severe flooding 
impacts, such as broken distribution pipes and damaged steam generation stations, can take 
significant time to repair, further increasing the duration of customer impacts. 

Increased frequency and intensity of precipitation events may increase the vulnerability of steam 
system manholes to “water hammer” events. When a high volume of water collects around a 
manhole, steam in the pipes underneath may cool and condense. Interaction between steam and 
the built-up condensate may cause a rupture in a steam pipe. One such water hammer event 
occurred in 2007 when a steam pipe at Lexington Avenue and 41st Street exploded during a period 
of heavy rainfall (Figure 22). Con Edison responded to that event by implementing a precautionary 
rain event threshold. If more than ¾ inch of rain is forecasted to fall within 3 hours, Con Edison will 
begin to proactively monitor and address flooding before it can cause a water hammer event. The 
key measure used to address flooding to prevent water hammer events is pumping water out of 
manholes and into the city sewer. In turn, Con Edison’s capacity to manage flooding events that 
threaten steam generation and distribution assets depends on the capacity of the city’s stormwater 
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system to handle high volumes of water that Con Edison 
may need to pump away from assets under a changing 
climate.  

Steam generation and distribution system assets are also 
vulnerable to projected increases in sea level and coastal 
inundation. Five out of six steam generating plants would be 
exposed to a 100-year storm if sea level rose by 3 feet. If 
water enters the steam generation system, it can degrade 
plant capacity or force unit or plant outages. Significant 
damage to steam generation systems would likely require 
long repair times, which could increase the duration of 
customer impacts. Hardening several of the generating 
stations to a higher level of protection would be difficult and 
costly. For example, at the East River Generating Station, 
raising mechanical equipment would require significant and 
costly alterations to the hydraulics of the steam system. 
Similarly, at East 13th Street, flood waters associated with a 
100-year storm and 3 feet of sea level rise would reach the 
tertiary bushings on some 345-kV transformers, resulting in 
arcing and critical failure of the unit. The total estimated cost 
to harden the five steam generation plants against a 100-
year storm and 3 feet of sea level rise is $30 million.  

Con Edison has adopted storm hardening measures to protect the steam system in response to 
recent storms such as Superstorm Sandy. Those measures include developing location-specific 
plans and drills in preparation for storms, implementing physical hardening measures at steam 
generating stations, protecting critical equipment by waterproofing or relocating it, installing a new 
steam main to ensure that hospitals receive continued service, and introducing isolation valves in 
strategic locations to reduce the number of customers impacted by flooding in future extreme 
events. Because isolating steam lines is key to managing flooding impacts, Con Edison considers 
several potential flood sources (e.g., rainfall deluges, storm tides, water main breaks) when 
evaluating hardening options, and periodically reviews and updates both operational and physical 
risk mitigation strategies. The company is also investing in steam system resilience through 
measures such as waterproofing system components in the normal course of upgrades, prioritizing 
hardening steam mains by prior flooding issues (fewer than 10 of the original 86 locations 
identified are still vulnerable), and using remote monitoring to monitor manhole water level and 
steam trap operation (a system is currently under design and expected to be operational by 2021). 

Extreme and multi-hazard events could also increase the vulnerability of the steam distribution 
system to salt damage and flood damage. During nor’easters and extreme ice storms, the City of New 
York and jurisdictions in Westchester County conduct widespread street-salting operations to 
mitigate ice build-up on roads and sidewalks. Rapid melt after nor’easters and extreme ice storms can 
lead to an influx of salt-saturated runoff into manholes, in turn causing equipment degradation and, 
in some cases, manhole fires or explosions.  

In a generally warmer climate, the steam system could experience significant decreases in winter 
energy sales for heating. There could be up to a 33% decrease by 2050 and a 49% decrease by 

Figure 22 ■ 2007 steam pipe explosion 
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2080. Similarly, under the RCP 8.5 scenario, winter gas peak load is projected to decrease by 891 
Mlb/hr in the winter of 2050 compared to the base case.  

Adaptation Options for the Steam System 
To determine when to implement various adaptation strategies, Con Edison could track climate 
trends, including TV, precipitation, sea level rise and storm surge, and extreme events, as described 
in prior vulnerability and adaptation sections. 

The Study team suggests that Con Edison could continue to work collaboratively with other city 
actors on initiatives that could help strengthen the resilience of the steam system. Specifically, the 
company could take measures, including the following: 

• Strengthen collaboration with the city to improve citywide stormwater design to alleviate 
flooding impacts and make adaptation measures implemented by Con Edison, such as drain 
pumps at manholes, more effective.  

• Discuss ways to minimize salt use during the winter. 
• Incorporate considerations of New York City initiatives in coastal resiliency plans for lower 

Manhattan to re-evaluate Con Edison’s storm response plans and stages of pre-emptive main 
shutoffs. 

 

In addition to engaging in these monitoring and coordination efforts, the company could also 
consider taking measures to address physical vulnerabilities in existing infrastructure by strategically 
investing in the system. Physical measures developed by the Study team are listed in Table 8.  

Table 8 ■ Physical adaptation options for steam commodities 

Hazard Asset Adaptation Option 
Implementation 
Timeframe 

Signpost or 
Threshold 

Extreme 
Hurricane 
(e.g., 
Category 4) 
 

Generation 
System 

Invest in additional storm hardening 
investment measures to protect generation 
sites against extreme hurricane-driven 
storm surge. Leverage new innovations and 
advancements in flood protection over time 
and raise moated walls around current 
generation sites. 

2050 When sea level rise 
exceeds 1 foot 

Distribution 
System 

Continue to segment the steam system to 
limit customer outages in flood-prone areas. 

In preparation for 
a Category 4 
hurricane 

Increased frequency 
and severity of storms, 
including from science-
based projections 

Distribution 
System 

Expand programs to harden steam mains 
(waterproofing pipes and raising mains). 

In preparation for 
a Category 4 
hurricane 

Increased frequency 
and severity of storms, 
including from science-
based projections  Pre-stage a greater number of drain pumps 

at critical or flood-prone manholes. 
 

As it is neither practical nor feasible for Con Edison to build resilience to the point that its steam 
system can fully withstand the impacts of extreme events, Con Edison could also consider 
implementing additional strategies to better absorb and recover from impacts, such as improving 
systems for crowd-sourcing steam system leak detection.  
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Moving Towards Implementation  
Initial Climate Projection Design Pathway 
Implementation of adaptation options to mitigate vulnerabilities requires clear climate design guidelines 
that incorporate forward-looking regional climate change projections. To this end, the Study team 
suggests that Con Edison could establish an “initial climate projection design pathway” that considers 
appropriate risk tolerance levels within the range of climate change projections. The initial climate 
projection design pathway is meant to guide preliminary planning and investments until and if Con Edison 
can refine the pathway to reflect new climate projections with reduced uncertainties, changes to Con 
Edison’s operating environment, and changes in city guidance. The following section outlines an adaptive 
management approach that allows Con Edison to monitor, manage, and design to acceptable levels of 
climate risk through time. 

As an initial climate projection design pathway for decisions that require it, Con Edison will follow the 
conservative precedent set by the city’s climate resiliency design standards (e.g., Mayor’s Office of 
Recovery and Resiliency, 2019), combined with the state-of-the-art climate projections produced for this 
Study. Corresponding to city guidance, the same pathway may not apply uniformly across different 
climate change projections and hazards. More specifically, multiple climate projection design pathways 
may be required to address differences in the risk tolerance and projection uncertainty associated with 
different climate hazards. Under this framework, initial pathways could use the 50th percentile merged 
RCP 4.5 and 8.5 projections for sea level rise and high-end 90th percentile merged RCP 4.5 and 8.5 
projections for heat and precipitation. Climate projection design pathways will be finalized for Con 
Edison’s Climate Change Implementation Plan. 

Alternative considerations are necessary to inform pathways for rare and difficult-to-model extreme 
events without probabilistic projections, such as 1-in-100-year heat waves and strong, multi-faceted 
hurricanes. Rather than prescribing statements of probability, these types of extremes require the 
blending of plausible worst-case scenarios from a climate perspective with stakeholder-driven worst-case 
scenarios from an impact perspective. Until climate modeling can better resolve and simulate these types 
of rare extreme events, the union of these two perspectives is critical for determining acceptable risk 
tolerance levels and setting initial pathways.  
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Flexible Adaptation Pathways Approach 
While the initial climate design pathway can inform asset design, a complementary approach is needed to 
ensure resilience over the lifetime of that asset. A flexible and adaptive approach will allow Con Edison to 
manage risks from climate change at acceptable levels, despite uncertainties about future conditions. The 
flexible adaptation pathways approach ensures continued adaptability over time as more information 
about climate change and external conditions is learned. Figure 23 depicts how flexible adaptation 
pathways are used to maintain tolerable levels of risk.  

Figure 23 ■ Flexible adaptation pathways in the context of tolerable risk and risk management challenges 
to non-flexible adaptation. Adapted from Rosenzweig & Solecki, 2014. 

 
 

Con Edison will need to consistently track changing conditions over time to identify when additional 
adaptation strategies are required. This approach relies on (1) monitoring indicators (“signposts”) related 
to climate conditions, climate impacts, and external conditions that affect system resilience, and (2) pre-
determined thresholds to signal the need for a change in risk management approaches (“transformation 
points”). This approach can support decisions on when, where, and how Con Edison can take action to 
continue to manage its climate risks at an acceptable level. Figure 24 depicts how a signpost indicator and 
a predefined threshold can be applied in the adaptation pathways approach to inform the timing of 
action given uncertainty.  
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Figure 24 ■ Schematic diagram of how an indicator of change for a particular signpost (e.g., amount of 
sea level rise) informs decision lead times that take into account uncertainty (Ranger et al., 2012). 

 
 

Con Edison is already familiar with monitoring signposts to manage planning uncertainties and guide 
adjustments to its Electric, Gas, and Steam Long Range Plans.20 Con Edison currently monitors signposts 
related to the pace of technology innovation (e.g., energy management technologies), the nature of 
regulation and legislation (e.g., new or revised greenhouse gas reduction policy targets), and the future of 
the economy (e.g., higher economic growth and impacts on demand), among others. In addition, the flexible 
adaptation pathways approach to manage climate change risks has been applied more widely by New York 
City and New York State (New York City Mayor's Office of Resiliency, 2019; Rosenzweig & Solecki, 2014) and 
utilities and infrastructure agencies across the United States, including San Diego Gas & Electric (Bruzgul et 
al., 2018; SDG&E, 2019) and Los Angeles Metro (Metro ECSD, 2019).  

This flexible adaptation pathways approach allows Con Edison to develop an adaptation implementation 
plan in the near term, while adjusting adaptation strategies based on the actual climate conditions that 
emerge, thus reducing the cost of managing uncertainty. Under this adaptive approach, resilience 
measures can be sequenced over time to respond to changing conditions. For example, Con Edison may 
identify actions to implement now that protect against near-term climate changes and actions that are 
low and no regret, while leaving options open to protect against the wide range of plausible changes 
emerging later in the century. This implementation approach is preferred to implementing actions now 
that are optimized for present-day conditions or a single future outcome that ignores uncertainty. 

                                                      
20 Long Range Plans are available at: https://www.coned.com/en/our-energy-future/our-energy-vision/long-range-plans 

https://www.coned.com/en/our-energy-future/our-energy-vision/long-range-plans
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Illustrative Adaptation Pathway: Sea Level Rise Adaptation for 
Substation in FEMA + 3’ Floodplain 

Flexible adaptation pathways could be developed for guiding the management and protection of 
specific assets or types of assets. Here, we consider a hypothetical electric substation that is potentially 
vulnerable to sea level rise, as it is located within the FEMA + 3’ floodplain (and, as such, is protected up 
to FEMA + 3’ flood heights based on Con Edison’s current design standards). This adaptation pathway 
is presented as illustrative; while it is grounded in the types of strategies that Con Edison would use for 
substation flood defense, a ready-to-implement pathway for implementation would require site-specific 
analysis and may differ from this configuration.  

Figure 25 ■ Illustrative flexible adaptation pathway for a hypothetical Con Edison substation in a current 
FEMA + 3' floodplain 
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Figure 25 illustrates how the implementation of adaptation actions can be phased over time, with the 
implementation of new measures being triggered by observed sea level rise in excess of certain thresholds 
(transformation points). The timing of these transformation points is indicated by monitoring the rate of sea 
level rise at a local tide gauge (green line). Transformation points are set based on the point at which Con 
Edison needs to take action in order to implement a higher standard of protection before existing protections 
become insufficient. 

In this adaptation pathway diagram, the implementation schedule of adaptation measures is illustrated based 
on a “central” sea level rise case. Measures based on this central scenario are illustrated with solid lines. If the 
actual pace of sea level rise deviates from the central case, monitoring of sea level rise may necessitate an 
accelerated or delayed implementation schedule 

In this example, it is assumed that the substation already has existing protections to FEMA + 3’ based on 
Con Edison’s post-Superstorm Sandy hardening measures (black line). However, these protections will no 
longer be sufficient to provide the requisite 2 feet of freeboard under a 100-year flood scenario once sea 
level rise surpasses 1 foot.  

• A trigger slightly under 1 foot leads to the first adaptation option, which is to supplement the 
substation’s defense-in-depth strategy with additional sump pump capacity.  

• The second adaptation option is triggered when sea level rise approaches 2 feet, and includes building 
new permanent flood barriers to a FEMA + 5’ level.  

• The final adaptation option, relocating the substation entirely, is triggered when sea level rise 
approaches 3 feet.  

Each trigger is far enough in advance of the critical risk threshold (each foot of sea level rise, in this case) 
to have time for full implementation of the adaptation option.  

Such a flexible adaptation pathway can allow Con Edison to better manage the costs of adaptation in the 
face of uncertainty, facilitating a prudent approach that avoids adapting too early or too late. 
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Signposts provide information that is critical for adaptive management decisions. Broad categories of 
signposts that Con Edison could consider monitoring include:  

• Climate variable observations and best available climate projections: An awareness of recent and 
present climate conditions and their rates of change are key when determining potential asset 
exposure and risk. As described above, Con Edison currently operates a number of stations that 
monitor climate variables and is finalizing plans to expand the number of monitoring locations. 
Furthermore, access to the most recent and best available climate projections and expert knowledge is 
critical when updating plans for potential future scenarios as the science advances. In some cases, 
thresholds for action under climate variable and projection signposts may be determined by how 
quickly changes in climate conditions are approaching existing design or operational specifications.  

• Climate impacts: Con Edison is already experiencing extreme weather and climate impacts to assets, 
operations and internal processes, and customers. Recognizing the risks, Con Edison is already 
conducting monitoring to identify areas of heightened vulnerability in its systems. Continued 
monitoring and evaluation of highest risk assets for impacts or near impacts can provide information 
about when and where additional adaptation options may be required.  

• Policy, societal, and economic conditions: Evolving external conditions may affect climate-related 
decision making and areas of need throughout the service territory. Con Edison is already monitoring 
signposts for external conditions related to policies, society, and economies as part of its long-range 
plans. Additional external conditions may shift with a changing climate, such as adaptation strategies 
and investments led by the city. 

 

The Study team identified a set of example signposts within each category, summarized in Table 9. Con 
Edison could consider coordinating with the city on NPCC’s proposed New York City Climate Change 
Resilience Indicators and Monitoring System (Blake et al., 2019), where overlap and efficiencies in 
monitoring signposts may exist.  

Table 9 ■ Example signposts for a flexible adaptation pathways approach 

Category Example Signposts 

Climate variable 
observations and best 
available climate 
projections 

 Chronic variables: Rate of change in TV, cooling degree-days, heating degree-days, sea levels, 
etc. relative to historical 

 Extreme weather variables: Number of days overheat index thresholds, storm surge levels, 
frequency of various storm types in the greater region, wind speeds, heat wave intensity and 
duration, intense precipitation levels, etc. 

 Updates to the best available climate projections: NPCC, IPCC, National Climate Assessment, 
etc. 

Climate impacts  Assets: Extent and magnitude of the costs of keystone asset damages (e.g., substations or 
power lines downed), damages incurred by events with different combinations of extreme 
weather, etc. 

 Operations and internal processes: Frequency of heat-related contingencies in the network and 
non-network systems, etc. 

 Customers: Number, spatial extent, and duration of outages caused by extreme weather, 
especially noting outages experienced by critical infrastructure and interdependent systems, etc. 

Policy, societal, and 
economic conditions 

 Policy: Updates to New York City design guidelines, etc. 
 Societal: Community-scale flood protection strategies led by New York City (e.g., East Side 

Coastal Resiliency Project), population shifts (e.g., retreat), etc. 
 Economic: Insurance prices and availability, etc. 
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Selecting Cost-Effective Solutions 
As outlined in this Study, adapting to climate change will require investments in infrastructure and 
processes. Although some adaptation will be achieved through co-benefits from investments that Con 
Edison makes under existing processes, such as using distributed energy resources to meet growing 
electricity demand, other adaptation will require investments over and above those previously planned. 
The costs of those investments will ultimately be reflected in customers’ bills. In order to minimize the 
financial impact of adapting to climate change, a cost-effective resilience planning process should identify 
a target level of resilience along with associated metrics, strike a balance between proactive and reactive 
spending, consider both the costs and benefits to customers, and select adaptation strategies that provide 
optimal benefit at the lowest cost.  

As the energy industry grapples with how best to build resilience to the changing climate, the issue of 
how to quantify the resilience of energy systems is front and center. There is currently no standard set of 
metrics for the resilience of energy systems. A 2017 report from the National Academies of Sciences, 
Engineering, and Medicine found that “there are no generally agreed-upon resilience metrics [for the 
electricity sector] that are widely used today,” also noting a contrast with the well-established set of 
electricity reliability metrics (NAS, 2017). 

While there are a wide variety of energy resilience metrics that have been proposed or piloted in various 
contexts, most of these metrics fit within one of two broad categories. Performance-based metrics seek to 
quantify the resilience of the system through measurement of infrastructure performance during actual or 
modeled disruptive events. Attribute-based metrics, on the other hand, measure the presence of 
characteristics or features that are known or predicted to increase resilience performance in the event of a 
disruption. (Vugrin, Castillo, & Silva-Monroy, 2017).  

Con Edison’s storm hardening investments after Superstorm Sandy were guided by a combination of 
performance-based metrics, such as “past performance” in the selective undergrounding of feeders, and 
attribute-based metrics, such as “reducing the number of customers served by a single circuit to fewer 
than 500 customers,” and adding “isolation devices to spurs and sub-spurs with open wire that are more 
than 2 spans in length” (Con Edison, 2013). Since the development of metrics is an active area of research 
and discussion, Con Edison could keep abreast of industry advances in resilience metrics for energy 
systems and incorporate those advances, where applicable, into its planning framework.  

Even after a resilience metric(s) is selected, the question of exactly how much to spend on resilience or 
what the right level of resilience is, remains. One approach is to compare the societal cost of an outage 
against the cost of resiliency measures to shorten that outage. The total cost curve developed by ICF’s 
Mihlmester and Kumaraswamy (Figure 26) is one example of such an approach (Mihlmester & 
Kumaraswamy, 2013). It shows for a hypothetical utility the post-outage time needed to restore service to 
90% of customers, known in the industry as “CR-90.” In this case, the lowest total costs, combining 
customer outage and grid-hardening costs, would be about $169 million for a 65-hour CR-90 restoration 
time. The graph also shows that getting the CR-90 time to less than a day would cost more than twice 
that amount.  

For Con Edison, the “right” level of resiliency investment will be strongly linked to the climate projection 
design pathway selected for each of the climate stressors identified for resiliency planning.  
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Figure 26 ■ Total cost of resiliency (Mihlmester & Kumaraswamy, 2013) 

 
 

Utilities have historically reacted to events, primarily because they lacked relevant climate projections and 
clear guidance or best practices for a methodology necessary to inform proactive adaptation and 
resiliency investments in infrastructure (California Energy Commission, 2018). Similarly, prior to conducting 
this study, Con Edison had limited information to guide proactive investments. The U.S. Department of 
Energy’s North American Energy Resilience Model (U.S. DOE, 2019) highlights the need to “transition from 
the current reactive state-of-practice to a new energy planning and operations paradigm in which we 
proactively anticipate damage to energy system equipment, predict associated outages and lack of 
service, and recommend optimal mitigation strategies.”  

The Study team has described an overarching resilience management framework in Figure 12, designed to 
minimize the impacts of extreme events throughout asset life cycles. The framework considers how the 
system can withstand, absorb, recover, and adapt to risks posed by extreme events. To succeed, each 
measure of a resilient system requires proactive planning and investments. 

Consideration of the costs and benefits to customers is a key component in the selection of adaptation 
options. Con Edison’s capital budget cycle currently considers costs and benefits through an investment 
optimization and management process that compares the wide array of capital investments the company 
makes across its various business units. The process calculates a “strategic value” for each project to 
compare the benefit of investing in one capital project or program over another and to ensure that spend 
is in alignment with the company’s corporate strategy. The strategic value is conveyed by a set of strategic 
drivers, each with relative weights, based on the company’s long-term objectives. The strategic value of 
each capital project is assessed against that of other projects, and an optimized portfolio of capital 
projects is generated. While the strategic drivers include reliability and customer satisfaction components, 
the drivers do not include or consider the resiliency benefit of a project. 
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Con Edison developed and used a cost-benefit calculation model to prioritize storm hardening 
investments after Superstorm Sandy. The model estimated “the vulnerability of individual electric system 
assets based on the impact of electric system damage to customers and supporting critical infrastructure, 
the duration of an electric service outage, the likelihood of those assets being affected by either flooding 
or wind damage, and the reduction in vulnerability of those assets because of storm hardening initiatives.” 
(Con Edison, 2014) 

Con Edison’s current distribution system planning process includes an evaluation of customer benefits 
resulting from investments. Con Edison’s Distributed System Implementation Plan (DSIP) (Con Edison, 2016) 
includes the consideration of distributed energy resources as one option to meeting growing demand. As 
part of Con Edison’s DSIP, the company has developed a Benefit Cost Analysis (BCA) Handbook that 
describes how to calculate individual benefits and costs. The BCA includes consideration of the unit cost of a 
particular option, per megawatt of delivery capacity, as well as an option’s “social cost.” Social cost accounts 
for the monetization of air pollution and carbon dioxide, using 20-year forecasts of marginal energy prices, 
the cost of complying with regulatory programs for constraining these pollutants, and the price paid for 
renewable energy credits. The social cost metric also qualitatively accounts for avoided water and land 
impacts. Beyond these environmental aspects, social cost accounts for net avoided restoration and outage 
costs to Con Edison, as well as net non-energy benefits (such as avoided service terminations, avoided 
uncollectable bills, and avoided noise and odor impacts). 

This Study illustrates the use of multi-criteria analysis to compare criteria that may be difficult to quantify 
or monetize, or that may not be effectively highlighted in the financial analysis. This process identified 
additional complementary metrics that could be included in Con Edison’s planning and budget 
prioritization process to account for uncertainty in climate outcomes. These metrics fall into two 
categories: co-benefits and adaptation benefits. Under a non-stationary climate, co-benefits 
(environmental, reputational, safety, and customer financial benefits) can help planners more 
comprehensively evaluate response options considering the additional challenges that climate change can 
pose on the system. In addition, consideration of adaptation benefits (flexibility, reversibility, robustness, 
proven technology, and customer’s resilience) support long-term planning under climate uncertainty. 
These metrics allow for effective implementation of adaptation measures over time to achieve resilience. 
Con Edison’s current processes include some of the metrics identified in the multi-criteria analysis 
(environmental and safety) but not others (customer’s resilience and reversibility). Con Edison could work 
to incorporate this wider set of metrics as it incorporates resiliency planning into its broader capital 
budgeting process.  

Key Issues to Be Addressed for Effective Implementation 

Changes in the Policy/Regulatory and Operating Environment 
Changes in the policy/regulatory and operating environment other than climate change were not 
accounted for in this Study but will be an important consideration when moving toward implementation. 
For example, the prioritization of adaptation strategies, and even the understanding of vulnerabilities, will 
need to consider these other drivers of change. Likewise, as Con Edison undertakes studies on how these 
factors will impact its business, climate change impacts could be factored into those studies. Some 
examples of possible changes in Con Edison’s operating environment include: 

• Climate change and clean energy targets: New York State and New York City have both adopted 
ambitious greenhouse gas emissions reduction targets (State of New York, 2019; City of New York, 2014), 
which will drive changes in the adoption of renewables, transportation electrification, energy storage, and 
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so forth. It will also impact relative demand across the commodities (e.g., decreasing gas demand and 
increasing electricity demand).  

• Technological advances: Advances in solar photovoltaics, energy storage, electric vehicles, and 
electrification of space heating are changing how and where electricity is generated and used.  

• Customer response to climate change impacts: Customers will also have to respond to climate 
change impacts. This may include shifting away from flooded coastlines (depending on city-scale 
investments in coastal protection) and, with it, shifting demand away from portions of Con Edison’s 
system.  

Coordination with External Entities 
Another critical need for effective implementation is coordination with external entities, including the City 
of New York and Westchester County, industry groups, equipment manufacturers, and others. Con Edison 
has limited authority to address certain vulnerabilities, such as the capacity of the city’s stormwater 
system, so coordination is necessary for developing a more resilient system. In addition, coordination is 
needed to ensure that Con Edison is not over-investing in locations that the city plans to protect or retreat 
from. This project seeded the necessary relationships; however, the continuation of the interactions will 
need to be specified in the governance section of the upcoming implementation plan.  

Establishing a Reporting and Governance Structure 
Con Edison will need a continuing approach to updating stakeholders on climate risk management 
progress. Of the various reporting options, many companies are opting to follow the relatively new 
framework outlined by the Task Force on Climate-Related Financial Disclosures (TCFD).21 This framework 
emphasizes the need to assess both the physical risks of climate change, which is covered in this study, as 
well as the risks and opportunities presented by transition to a low-carbon economy. It requires 
consideration of the financial implications of the risks and opportunities, as well as a measurable risk 
management plan that is integrated with a strong governance structure. 

Two risks that were not explored in this study, but would fit well in the TCFD framework, include: 

• Costs and penalizations from service failure and outages: Costs associated with an outage event 
include restoration; collateral damage; customer claims; penalties, fines, audits, remediation, and 
reporting; and the financial impact of lost confidence. For example, in 2007, Con Edison was penalized 
$18 million for its 2006 service disruptions, which included a 9-day blackout in western Queens.  

• Credit rating: Increasingly frequent and intense extreme weather events could also impact credit 
rating risks and insurance liabilities. Credit rating agencies like Standard & Poor’s and Moody’s have 
added “resiliency” as a component of their rating criteria, indicating the relevance of climate risk for 
creditworthiness (Shafroth, 2016). Similarly, utilities may be increasingly choosing to retain a higher 
level of insurance to cope with more frequent and destructive weather-related events. However, a 
higher level of insurance protection leads to higher costs that may ultimately be reflected on 
customers’ bills. Thus, while not as visible as physical asset or planning vulnerabilities, climate risks 
related to credit and insurance can have an impact on the utility.  

 

Establishing a governance structure will be crucial for the successful continuation of Con Edison’s climate 
change adaptation work. The governance structure can be used to encourage and track progress on the 
implementation of adaptation strategies (i.e., performance against set metrics and targets), ensure specific 

                                                      
21 For more information on the Task Force on Climate-Related Financial Disclosures, see https://www.fsb-tcfd.org/ 

https://www.fsb-tcfd.org/
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people are on point for monitoring and implementing various strategies, and establish a frequency and 
process for reporting on risks and adaptation actions from individual employees to senior managers to Con 
Edison’s board of directors.  

Next Steps 
As a next step from this Study, Con Edison will develop a detailed Climate Change Implementation Plan to 
operationalize the suggestions from this Climate Change Vulnerability Study. The implementation plan 
will: 

• Review the Study and investigate whether recent progress in climate science may warrant inclusion. 
• Select climate change pathway(s) to incorporate into design standards and procedures. 
• Establish life cycle tables that provide timeframes of reference climate variables through 2080. 
• Aggregate input from subject matter experts on changes required for specifications/procedures and 

choices for risk mitigation measures. 
• Develop a timeline and written plan for the implementation of risk mitigation measures. 
• Identify the scope and cost within the 5-year capital plan and 10- and 20-year long-range plans. 
• Establish signposts for the re-evaluation of measure installation schedules. 
• Conduct periodic progress meetings for external stakeholders. 
• Recommend a governance structure for climate change monitoring and updating. 
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Appendices 
To inform the conclusions of this Study, the Study team undertook a series of in-depth vulnerability 
assessments corresponding to the climate hazards representing outsized risks to Con Edison: 
temperature, humidity, precipitation, sea level rise, and extreme events. These are included as 
appendices. Each appendix includes detailed historical and projected climate conditions; 
corresponding climate-driven vulnerabilities to operations, planning, and infrastructure across the 
company’s electric, gas, and steam systems; and potential adaptation strategies to mitigate 
vulnerabilities. 

For each hazard, the Study team collaborated with Con Edison subject matter experts to conduct a 
rapid screen of the sensitivity of operations, planning, and infrastructure to support a risk-first 
approach. Vulnerabilities were then selected for more detailed analyses, which focused on 
understanding asset vulnerabilities to climate change and, in turn, relevant adaptation options and 
evaluation of their costs and co-benefits. These analyses informed the development of flexible 
solutions and signposts to guide implementation of potential adaptation options through time.  

Ultimately, the five appendices provide key context for the climate science, vulnerabilities, and 
adaptation strategies discussed in this report, and as such, can be referenced for more 
comprehensive information in each subject area. 

• Appendix 1 – Temperature: Identifies how projected gradual trends in increasing 
temperature may affect operations, planning, and infrastructure across the electric, gas, and 
steam segments of Con Edison’s business. 

• Appendix 2 – Humidity, Temperature Variable, and Load: Addresses climate 
variables—humidity (expressed through wet bulb temperature), heat waves, cooling degree-
days, heating degree-days, and the combination of projected changes in wet and dry bulb 
temperatures—that have a direct effect on system loads and reliability. These variables are also 
specifically addressed in specifications and procedures associated with upgrading system 
capacity and maintaining system reliability.  

• Appendix 3 – Changes in Precipitation Patterns: Discusses the potential for climate-
driven changes in rainfall and frozen precipitation in Con Edison’s service territory, and the 
potential impacts of those changes on Con Edison’s assets and operations. 

• Appendix 4 – Sea Level Rise and Changes in Coastal Storm Surge Potential: 
Examines the ways in which changes in sea level may affect operations, planning, and 
infrastructure across the electric, gas, and steam segments of Con Edison’s business. 

• Appendix 5 – Extreme Events: Describes how extreme weather events (hurricanes, 
nor’easters, and heat waves), as well as concurrent or consecutive extreme events, may become 
more frequent and severe due to climate change, and considers their potential impact on 
operations, planning, and infrastructure across the electric, gas, and steam segments of Con 
Edison’s business over the coming century. 
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